Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunatel...Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunately,this crucial process often occurs through unsecured wireless connections,exposing it to numerous cyber-physical attacks.Furthermore,UAVs’limited onboard computing resources make it challenging to perform complex cryptographic operations.The main aim of constructing a cryptographic scheme is to provide substantial security while reducing the computation and communication costs.This article introduces an efficient and secure cross-domain Authenticated Key Agreement(AKA)scheme that uses Hyperelliptic Curve Cryptography(HECC).The HECC,a modified version of ECC with a smaller key size of 80 bits,is well-suited for use in UAVs.In addition,the proposed scheme is employed in a cross-domain environment that integrates a Public Key Infrastructure(PKI)at the receiving end and a Certificateless Cryptosystem(CLC)at the sending end.Integrating CLC with PKI improves network security by restricting the exposure of encryption keys only to the message’s sender and subsequent receiver.A security study employing ROM and ROR models,together with a comparative performance analysis,shows that the proposed scheme outperforms comparable existing schemes in terms of both efficiency and security.展开更多
[Objectives]To investigate the effects of silicon fertilizer spraying on the growth,yield,quality,and overall benefits of rice cultivation.[Methods]A systematic experiment involving the single-spray multi-promotion te...[Objectives]To investigate the effects of silicon fertilizer spraying on the growth,yield,quality,and overall benefits of rice cultivation.[Methods]A systematic experiment involving the single-spray multi-promotion technology of silicon fertilizer via unmanned aerial vehicles(UAVs)was conducted in three representative rice-growing areas:Ma'an Town,Shuikou Subdistrict,and Luzhou Town.[Results]The spraying of silicon fertilizer markedly enhanced the root development of rice,resulting in increased tiller number,plant height,stem thickness,panicle length,and 1000-grain weight,thereby effectively improving both yield and quality.This treatment exerted six primary beneficial effects:promoting robust and stable seedling growth,enhancing stress resistance,reducing reliance on chemical fertilizers,improving quality,increasing economic benefits,and significantly advancing ecological and social benefits.[Conclusions]The application of silicon fertilizer through spraying is an effective agronomic practice that simultaneously promotes increased rice yield,improved quality,enhanced efficiency,and the sustainable development of resources and the environment.展开更多
The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and p...The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.展开更多
Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles t...Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles to the desired formation shape while minimizing the total cost function.Leveraging the backstepping design,a distributed control strategy is proposed that incorporates a dynamic system for generating a reference trajectory and a trajectory tracking controller for each vehicle.展开更多
This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study ...This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study reveals that the voltage,current,and power output of the solar cells undergo consistent temporal variations throughout the day,primarily driven by voltage fluctuations,with a peak occurring around noon.Secondly,it is observed that the cells’performance is significantly more influenced by temporal variations in external light intensity than by temperature changes resulting from variations in flight speed.Finally,the study finds that the impact of flight altitude on the cells’performance is slightly more pronounced than the influence of temporal variations in external light intensity.展开更多
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win...Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.展开更多
In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address t...In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address these challenges,this paper proposes an improved detection algorithm based on YOLOv11n.First,a Dynamic Multi-Scale Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network(AFDPN),which enhances the feature expression and transmission capability of shallow small targets,thereby reducing the loss of detailed information.Then,combined with an Edge Enhancement(EE)module,the model improves the extraction of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies.Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8%increase in average detection accuracy and a 3.0%improvement in recall rate compared to YOLOv11n,with a computational cost of only 9.1 GFLOPS.In comparison experiments,the detection accuracy and model size balance achieved the optimal solution,meeting the lightweight deployment requirements for drone-based systems.This method provides a high-precision,lightweight solution for small target detection in drone-based infrared imagery.展开更多
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resour...Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
This study compared the control effect of 110 g/L etoxazole SC,15%abamectin·etoxazole SC,30%cyetpyrafen SC,43%bifenazate SC and 1.8%abamectin EC five acaricides sprayed by unmanned aerial vehicle(UAV)on Panonychu...This study compared the control effect of 110 g/L etoxazole SC,15%abamectin·etoxazole SC,30%cyetpyrafen SC,43%bifenazate SC and 1.8%abamectin EC five acaricides sprayed by unmanned aerial vehicle(UAV)on Panonychus citri,aiming to screen out the appropriate acaricide for the control of this pest by UAV spraying.The results showed that 15%abamectin·etoxazole SC and 30%cyetpyrafen SC had the highest control efficacy,which remained above 90%14 d after application.Secondary performance was observed in 43%bifenazate SC and 110 g/L etoxazole SC,which demonstrated enhancing control effect.However,1.8%abamectin EC showed slower effect.Considering the control effect and population reduction rate of P.citri,15%abamectin·etoxazole SC and 30%cyetpyrafen SC were suggested as the effective acaricides for the control of this pest.展开更多
Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the n...Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.展开更多
The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the s...The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the statistical data of weights for various main combat aircraft. The UCAV airborne weapons are analyzed, followed by the preliminary estimation of the payload weight. Various typical engines are analyzed and one of them is selected. Then the takeoff weight of the UCAV is determined. Based on some basic parameters and assumptions, the qualitative decomposition calculation for takeoff weight is completed. The key factors for obtaining longer endurance of aircraft with small aspect ratio configuration are found to be high lift-drag ratio and internal space. On the basis of the conclusions mentioned above, a highly blended flying-wing plus lifting body concept is proposed. According to this concept, the UCAV configuration is designed and optimized. Finally, the UCAV configuration with small aspect ratio, high lift-drag ratio, and high stealth characteristic is obtained.展开更多
In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy...In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.展开更多
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper...The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.展开更多
The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technica...The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.展开更多
With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during th...With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.展开更多
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ...This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.展开更多
This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control s...This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control strategies under fault-free flight conditions of multi-UAVs are first summarized and analyzed,including the leader-following,behavior-based,virtual structure,collision avoidance,algebraic graph-based,and close formation control methods,which are viewed as the cooperative control methods for multi-UAVs at the pre-fault stage.Then,by considering the various faults encountered by the multi-UAVs,the state-of-the-art developments on individual,leader-following,and distributed FTCC schemes for multi-UAVs are reviewed in detail.Finally,conclusions and challenging issues towards future developments are presented.展开更多
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
文摘Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunately,this crucial process often occurs through unsecured wireless connections,exposing it to numerous cyber-physical attacks.Furthermore,UAVs’limited onboard computing resources make it challenging to perform complex cryptographic operations.The main aim of constructing a cryptographic scheme is to provide substantial security while reducing the computation and communication costs.This article introduces an efficient and secure cross-domain Authenticated Key Agreement(AKA)scheme that uses Hyperelliptic Curve Cryptography(HECC).The HECC,a modified version of ECC with a smaller key size of 80 bits,is well-suited for use in UAVs.In addition,the proposed scheme is employed in a cross-domain environment that integrates a Public Key Infrastructure(PKI)at the receiving end and a Certificateless Cryptosystem(CLC)at the sending end.Integrating CLC with PKI improves network security by restricting the exposure of encryption keys only to the message’s sender and subsequent receiver.A security study employing ROM and ROR models,together with a comparative performance analysis,shows that the proposed scheme outperforms comparable existing schemes in terms of both efficiency and security.
基金Supported by Huizhou Municipal Stable Grain and Oil Production Award and Subsidy Project"2025 Single-spray Multi-Promotion Project of Silicon Fertilizer on Rice Crops Using UAVs of Huicheng District".
文摘[Objectives]To investigate the effects of silicon fertilizer spraying on the growth,yield,quality,and overall benefits of rice cultivation.[Methods]A systematic experiment involving the single-spray multi-promotion technology of silicon fertilizer via unmanned aerial vehicles(UAVs)was conducted in three representative rice-growing areas:Ma'an Town,Shuikou Subdistrict,and Luzhou Town.[Results]The spraying of silicon fertilizer markedly enhanced the root development of rice,resulting in increased tiller number,plant height,stem thickness,panicle length,and 1000-grain weight,thereby effectively improving both yield and quality.This treatment exerted six primary beneficial effects:promoting robust and stable seedling growth,enhancing stress resistance,reducing reliance on chemical fertilizers,improving quality,increasing economic benefits,and significantly advancing ecological and social benefits.[Conclusions]The application of silicon fertilizer through spraying is an effective agronomic practice that simultaneously promotes increased rice yield,improved quality,enhanced efficiency,and the sustainable development of resources and the environment.
基金supported by the National Natural Science Foundation of China(U20B2042).
文摘The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.
基金supported by the National Natural Science Foundation of China(62003214)Guangdong Basic and Applied Basic Research Foundation(2024A1515012681)+1 种基金the Natural Science Foundation of Shanghai(22ZR1443600)Shanghai Pujiang Programme(23PJD064).
文摘Dear Editor,This letter considers the problem of achieving optimal formation control in multiple vertical take-off and landing(VTOL)unmanned aerial vehicles(UAVs).Specifically,the objective is to derive the vehicles to the desired formation shape while minimizing the total cost function.Leveraging the backstepping design,a distributed control strategy is proposed that incorporates a dynamic system for generating a reference trajectory and a trajectory tracking controller for each vehicle.
基金supported by the National Natural Science Foundation of China(Nos.12464010,52462035)2022 Jiangxi Province High-Level and High-Skilled Leading Talent Training Project Selected(No.63)+1 种基金Jiujiang“Xuncheng Talents”(No.JJXC2023032)Jiujiang Basic Research Program Project(2025).
文摘This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study reveals that the voltage,current,and power output of the solar cells undergo consistent temporal variations throughout the day,primarily driven by voltage fluctuations,with a peak occurring around noon.Secondly,it is observed that the cells’performance is significantly more influenced by temporal variations in external light intensity than by temperature changes resulting from variations in flight speed.Finally,the study finds that the impact of flight altitude on the cells’performance is slightly more pronounced than the influence of temporal variations in external light intensity.
基金supported by National Natural Science Foundation of China under Grant No.62236007the specialized research projects of Huanjiang Laboratory.
文摘Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.
文摘In the context of target detection under infrared conditions for drones,the common issues of high missed detection rates,low signal-to-noise ratio,and blurred edge features for small targets are prevalent.To address these challenges,this paper proposes an improved detection algorithm based on YOLOv11n.First,a Dynamic Multi-Scale Feature Fusion and Adaptive Weighting approach is employed to design an Adaptive Focused Diffusion Pyramid Network(AFDPN),which enhances the feature expression and transmission capability of shallow small targets,thereby reducing the loss of detailed information.Then,combined with an Edge Enhancement(EE)module,the model improves the extraction of infrared small target edge features through low-frequency suppression and high-frequency enhancement strategies.Experimental results on the publicly available HIT-UAV dataset show that the improved model achieves a 3.8%increase in average detection accuracy and a 3.0%improvement in recall rate compared to YOLOv11n,with a computational cost of only 9.1 GFLOPS.In comparison experiments,the detection accuracy and model size balance achieved the optimal solution,meeting the lightweight deployment requirements for drone-based systems.This method provides a high-precision,lightweight solution for small target detection in drone-based infrared imagery.
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
基金the National Natural Science Foundation of China(No.61871133)the Natural Science Foundation of Fujian Province(No.2021J01587)。
文摘Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
文摘This study compared the control effect of 110 g/L etoxazole SC,15%abamectin·etoxazole SC,30%cyetpyrafen SC,43%bifenazate SC and 1.8%abamectin EC five acaricides sprayed by unmanned aerial vehicle(UAV)on Panonychus citri,aiming to screen out the appropriate acaricide for the control of this pest by UAV spraying.The results showed that 15%abamectin·etoxazole SC and 30%cyetpyrafen SC had the highest control efficacy,which remained above 90%14 d after application.Secondary performance was observed in 43%bifenazate SC and 110 g/L etoxazole SC,which demonstrated enhancing control effect.However,1.8%abamectin EC showed slower effect.Considering the control effect and population reduction rate of P.citri,15%abamectin·etoxazole SC and 30%cyetpyrafen SC were suggested as the effective acaricides for the control of this pest.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Innovation Found of Air Force Engineering University(KGD08101604)
文摘Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.
文摘The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the statistical data of weights for various main combat aircraft. The UCAV airborne weapons are analyzed, followed by the preliminary estimation of the payload weight. Various typical engines are analyzed and one of them is selected. Then the takeoff weight of the UCAV is determined. Based on some basic parameters and assumptions, the qualitative decomposition calculation for takeoff weight is completed. The key factors for obtaining longer endurance of aircraft with small aspect ratio configuration are found to be high lift-drag ratio and internal space. On the basis of the conclusions mentioned above, a highly blended flying-wing plus lifting body concept is proposed. According to this concept, the UCAV configuration is designed and optimized. Finally, the UCAV configuration with small aspect ratio, high lift-drag ratio, and high stealth characteristic is obtained.
基金supported by the Natural Science Foundation of China under Grant No.62001517.
文摘In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.
文摘The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one.
基金co-supported by the National Natural Science Foundation of China (Nos. 61503369 and 61433016)
文摘The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371)Joint Funds of Equipment Pre-Research and Ministry of Education of China(6141A02033339)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.
基金supported in part by National Natural Science Foundation of China(Nos.61833013,62003162,62020106003,61873055)Natural Science Foundation of Jiangsu Province of China(No.BK20200416)+4 种基金China Postdoctoral Science Foundation(Nos.2020TQ0151,2020M681590)State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang,China(No.2019-KF-23-05)111 ProjectChina(No.B20007)Natural Sciences and Engineering Research Council of Canada.
文摘This paper presents the recent developments in Fault-Tolerant Cooperative Control(FTCC)of multiple unmanned aerial vehicles(multi-UAVs).To facilitate the analyses of FTCC methods for multi-UAVs.the formation control strategies under fault-free flight conditions of multi-UAVs are first summarized and analyzed,including the leader-following,behavior-based,virtual structure,collision avoidance,algebraic graph-based,and close formation control methods,which are viewed as the cooperative control methods for multi-UAVs at the pre-fault stage.Then,by considering the various faults encountered by the multi-UAVs,the state-of-the-art developments on individual,leader-following,and distributed FTCC schemes for multi-UAVs are reviewed in detail.Finally,conclusions and challenging issues towards future developments are presented.