This research presents an advanced study on the modeling and stability analysis of electro-hydraulic control modules used in intelligent chassis systems.Firstly,a comprehensive nonlinear mathematical model of the elec...This research presents an advanced study on the modeling and stability analysis of electro-hydraulic control modules used in intelligent chassis systems.Firstly,a comprehensive nonlinear mathematical model of the electro-hydraulic power-shift system is developed,incorporating pipeline characteristics through impedance analysis and examining coupling effects between the pilot solenoid valve,main valve,and pipeline.Then,the model’s accuracy is validated through experimental testing,demonstrating high precision and minimal model errors.A comparative analysis between simulation data(both with and without pipeline characteristics)and experimental results reveals that the model considering pipeline parameters aligns more closely with experimental data,highlighting its superior accuracy.The research further explores the influence of key factors on system stability,including damping coefficient,feedback cavity orifice diameter,spring stiffness,pipeline length,and pipeline diameter.Significant findings include the critical impact of damping coefficient,orifice diameter,and pipeline length on stability,while spring stiffness has a minimal effect.These findings provide valuable insights for optimizing electro-hydraulic control modules in intelligent chassis systems,with practical implications for automotive and construction machinery applications.展开更多
Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ...Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.展开更多
This paper introduces the Advanced Observer Model (AOM), a novel framework that integrates classical mechanics, quantum mechanics, and relativity through the observer’s role in constructing reality. Central to the AO...This paper introduces the Advanced Observer Model (AOM), a novel framework that integrates classical mechanics, quantum mechanics, and relativity through the observer’s role in constructing reality. Central to the AOM is the Static Configuration/Dynamic Configuration (SC/DC) conjugate, which examines physical systems through the interaction between static spatial configurations and dynamic quantum states. The model introduces a Constant Frame Rate (CFR) to quantize time perception, providing a discrete model for time evolution in quantum systems. By modifying the Schrödinger equation with CFR, the AOM bridges quantum and classical physics, offering a unified interpretation where classical determinism and quantum uncertainty coexist. A key feature of the AOM is its energy scaling model, where energy grows exponentially with spatial dimensionality, following the relationshipE∝(π)n. This dimensional scaling connects the discrete time perception of the observer with both quantum and classical energy distributions, providing insights into the nature of higher-dimensional spaces. Additionally, the AOM posits that spacetime curvature arises from quantum interactions, shaped by the observer’s discrete time perception. The model emphasizes the observer’s consciousness as a co-creator of reality, offering new approaches to understanding the quantum-classical transition. While speculative, the AOM opens new avenues for addressing foundational questions in quantum mechanics, relativity, dimensionality, and the nature of reality.展开更多
This paper introduces a groundbreaking synthesis of fundamental quantum mechanics with the Advanced Observer Model (AOM), presenting a unified framework that reimagines the construction of reality. AOM highlights the ...This paper introduces a groundbreaking synthesis of fundamental quantum mechanics with the Advanced Observer Model (AOM), presenting a unified framework that reimagines the construction of reality. AOM highlights the pivotal role of the observer in shaping reality, where classical notions of time, space, and energy are reexamined through the quantum lens. By engaging with key quantum equations—such as the Schrödinger equation, Heisenberg uncertainty principle, and Dirac equation—the paper demonstrates how AOM unifies the probabilistic nature of quantum mechanics with the determinism of classical physics. Central to this exploration is the Sequence of Quantum States (SQS) and Constant Frame Rate (CFR), which align with concepts like quantum superposition, entanglement, and wave function collapse. The model’s implications extend to how observers perceive reality, proposing that interference patterns between wave functions form the foundation of observable phenomena. By offering a fresh perspective on the interplay between determinacy and indeterminacy, AOM lays a robust theoretical foundation for future inquiry into quantum physics and the philosophy of consciousness.展开更多
This paper presents the Advanced Observer Model (AOM), a groundbreaking conceptual framework designed to clarify the complex and often enigmatic nature of quantum mechanics. The AOM serves as a metaphorical lens, brin...This paper presents the Advanced Observer Model (AOM), a groundbreaking conceptual framework designed to clarify the complex and often enigmatic nature of quantum mechanics. The AOM serves as a metaphorical lens, bringing the elusive quantum realm into sharper focus by transforming its inherent uncertainty into a coherent, structured ‘Frame Stream’ that aids in the understanding of quantum phenomena. While the AOM offers conceptual simplicity and clarity, it recognizes the necessity of a rigorous theoretical foundation to address the fundamental uncertainties that lie at the core of quantum mechanics. This paper seeks to illuminate those theoretical ambiguities, bridging the gap between the abstract insights of the AOM and the intricate mathematical foundations of quantum theory. By integrating the conceptual clarity of the AOM with the theoretical intricacies of quantum mechanics, this work aspires to deepen our understanding of this fascinating and elusive field.展开更多
In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophis...In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophisticated land-surface model (IAP94-GCM) are presented and compared with the observation. The comparison is made by using the equilibrium multiyear seasonal cycle climate from a 100-year integration. In the integration sea surface temperature (SST) and sea ice are taken from the observed climatological data (with seasonal variation) because our purpose is to see the improvement of simulation due to the coupling with an advanced land surface model. Overall, the IAP94-GCM provides a reasonably realistic simulation of the interseasonal and intraseasonal climatology of the Asian monsoon and yields an important information that sheds light on the thermal underpinning and the thermodynamics of the seasonal and even multiscale variabilities associated with the Asian summer monsoon.展开更多
This paper contrasts predicted X-band sea surface backscattering from slick-free and oil-covered sea surfaces with actual measurements acquired by the X-band satellite TerraSAR-X and COSMO-SkyMed Synthetic Aperture Ra...This paper contrasts predicted X-band sea surface backscattering from slick-free and oil-covered sea surfaces with actual measurements acquired by the X-band satellite TerraSAR-X and COSMO-SkyMed Synthetic Aperture Radar(SAR)missions.Two SAR scenes were acquired with a temporal difference of about 36 minutes,under similar met-ocean conditions,during the North Sea’s Gannet Alpha oil spill accident.The normalized radar cross section of the slick-free sea surface is predicted using the Advanced Integral Equation Model(AIEM)while the backscatter from the oiled sea surface is predicted by the AIEM augmented with the Model of Local Balance(MLB)to include the damping effect of oil slicks.Experimental results show that X-band co-polarized numerical predictions agree reasonably well with both TSX and CSK actual measurements collected over slick-free sea surfaces.When dealing with oil-covered sea surfaces,the predicted backscattering reasonably agrees with TSX measurements,while it overestimates the CSK ones.This is likely due to the different spreading conditions of the oil imaged by the two satellite missions.展开更多
Demand response(DR)is usually regarded as a valuable balancing and reserve resource that contributes to maintaining power balance and integrating renewable energies.However,the price elasticity curve of the DR resourc...Demand response(DR)is usually regarded as a valuable balancing and reserve resource that contributes to maintaining power balance and integrating renewable energies.However,the price elasticity curve of the DR resources is influenced by consumers’behavioral uncertainty and therefore is difficult to predict.Consequently,additional risk may be introduced to composite power system reliability.Considering that,this paper investigates a reliability assessment of composite power system considering both the merits and potential uncertainty involved in the DR.First,the psychological behavior and consumption behavior of consumers are characterized in the DR modeling.A novel DR uncertainty index(denoted as I^(U))measures uncertainty of consumer’s behavior when electricity price changes.Then,an advanced Sigmoid cloud model is proposed to depict the comprehensive uncertain mapping relationships between price and I^(U).Moreover,an improved demand elasticity matrix is proposed,in which price-quantity elastic coefficients are modified by the I^(U)index.Finally,a reliability assessment framework for a composite power system is developed considering the uncertain price-based DR model and a k-means algorithm is used to accelerate the assessment process.Accuracy and effectiveness of the proposed method are investigated through the case study on RBTS,RTS79 and RTS96 reliability test systems.展开更多
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. T...The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures.展开更多
JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN...JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN and the adaptive structured mesh infrastructure JASMIN.JMCT is equipped with CAD modeling and visualizes the image output.It supports the geometry of the body and the structured/unstructured mesh.JMCT has most functions,variance reduction techniques,and tallies of the traditional Monte Carlo particle transport codes.Two energy models,multi-group and continuous,are provided.In recent years,some new functions and algorithms have been developed,such as Doppler broadening on-thefly(OTF),uniform tally density(UTD),consistent adjoint driven importance sampling(CADIS),fast criticality search of boron concentration(FCSBC)domain decomposition(DD),adaptive control rod moving(ACRM),and random geometry(RG)etc.The JMCT is also coupled with the discrete ordinate SNcode JSNT to generate source-biasing factors and weight-window parameters.At present,the number of geometric bodies,materials,tallies,depletion zones,and parallel processors are sufficiently large to simulate extremely complicated device problems.JMCT can be used to simulate reactor physics,criticality safety analysis,radiation shielding,detector response,nuclear well logging,and dosimetry calculations etc.In particular,JMCT can be coupled with depletion and thermal-hydraulics for the simulation of reactor nuclear-hot feedback effects.This paper describes the progress in advanced modeling,high-performance numerical simulation of particle transport,multiphysics coupled calculations,and large-scale parallel computing.展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
In this paper, a new approach was introduced to estimate surface soil moisture using alternating polarization (AP) data of ad- vanced synthetic aperture radar (ASAR). First, synthetic aperture radar (SAR) backsc...In this paper, a new approach was introduced to estimate surface soil moisture using alternating polarization (AP) data of ad- vanced synthetic aperture radar (ASAR). First, synthetic aperture radar (SAR) backscattering characteristic of bare surface at C band was simulated using advanced integrated equation model (AIEM), and four bare surface backscattering models with different polarization were established. In addition, with simultaneous equations of the for- mer four formulas, the surface roughness was eliminated, and models used to estimate soil moisture on bare surface were derived from simulated multipolarization and multiangle ASAR-AP data. Based on these, the best combination of polarization and incident angle was determined. Finally, soil moisture in the middle stream of the Heihe River Basin was estimated. The field measured data demonstrated that the proposed method was capable of retrieving surface soil moisture for both sparse grassland and homogeneous farmland area.展开更多
In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-pol...In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-polarized backscattering coefficients accurately, we propose an empirical model to retrieve soil moisture for bare farmland only with co-polarized SAR data. The soil moisture can be obtained by solving an equation of HH and VV polarized data without any field measurements. Both simulated and real SAR data are used to validate the accuracy of the model. This method is especially effective in a large area where the surface roughness is difficult to be completely measured.展开更多
1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In ...1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental展开更多
1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In ...1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental or modeling approaches.The Materials Genome Initiative was展开更多
The Advanced Radiative Transfer Modeling System(ARMS),a computationally efficient satellite observation operator,has been successfully integrated into the YinHe four-dimensional variational data assimilation(YH4DVAR)s...The Advanced Radiative Transfer Modeling System(ARMS),a computationally efficient satellite observation operator,has been successfully integrated into the YinHe four-dimensional variational data assimilation(YH4DVAR)system.This study investigates the impacts of assimilating Advanced Microwave Sounding Unit-A(AMSU-A)observations from the Meteorological Operational Satellite-C(MetOp-C)on the performance of YH4DVAR.Through a month-long global statistical analysis and a case study of Typhoon Hinnamnor,we evaluate the benefits of AMSUA data assimilation under clear sky conditions.Key findings are as follows.(1)ARMS achieves simulation accuracy comparable to RTTOV(Radiative Transfer for the Television and InfraRed Observation Satellite Operational Vertical sounder)version 11.2,demonstrating only a 0.5%discrepancy in data retention after quality control.(2)Implementation of ARMS as an operator in YH4DVAR enhances forecast accuracy for the 850-hPa temperature and 500-hPa geopotential height in the tropical region.(3)Compared to RTTOV,ARMS has improved the intensity forecast of Typhoon Hinnamnor and reduced mean wind speed errors by approximately 2%and central pressure errors by approximately1%.ARMS has now been operationally adopted as an alternative observational operator within YH4DVAR,demonstrating exceptional numerical stability,computational efficiency,and promising potential for future satellite data assimilation applications.展开更多
基金Supported by the Basic Product Innovation Plan for Vehicle Power Scientific Research Project(Grant No.JCCPCX201704).
文摘This research presents an advanced study on the modeling and stability analysis of electro-hydraulic control modules used in intelligent chassis systems.Firstly,a comprehensive nonlinear mathematical model of the electro-hydraulic power-shift system is developed,incorporating pipeline characteristics through impedance analysis and examining coupling effects between the pilot solenoid valve,main valve,and pipeline.Then,the model’s accuracy is validated through experimental testing,demonstrating high precision and minimal model errors.A comparative analysis between simulation data(both with and without pipeline characteristics)and experimental results reveals that the model considering pipeline parameters aligns more closely with experimental data,highlighting its superior accuracy.The research further explores the influence of key factors on system stability,including damping coefficient,feedback cavity orifice diameter,spring stiffness,pipeline length,and pipeline diameter.Significant findings include the critical impact of damping coefficient,orifice diameter,and pipeline length on stability,while spring stiffness has a minimal effect.These findings provide valuable insights for optimizing electro-hydraulic control modules in intelligent chassis systems,with practical implications for automotive and construction machinery applications.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3900400)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42361074)。
文摘Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.
文摘This paper introduces the Advanced Observer Model (AOM), a novel framework that integrates classical mechanics, quantum mechanics, and relativity through the observer’s role in constructing reality. Central to the AOM is the Static Configuration/Dynamic Configuration (SC/DC) conjugate, which examines physical systems through the interaction between static spatial configurations and dynamic quantum states. The model introduces a Constant Frame Rate (CFR) to quantize time perception, providing a discrete model for time evolution in quantum systems. By modifying the Schrödinger equation with CFR, the AOM bridges quantum and classical physics, offering a unified interpretation where classical determinism and quantum uncertainty coexist. A key feature of the AOM is its energy scaling model, where energy grows exponentially with spatial dimensionality, following the relationshipE∝(π)n. This dimensional scaling connects the discrete time perception of the observer with both quantum and classical energy distributions, providing insights into the nature of higher-dimensional spaces. Additionally, the AOM posits that spacetime curvature arises from quantum interactions, shaped by the observer’s discrete time perception. The model emphasizes the observer’s consciousness as a co-creator of reality, offering new approaches to understanding the quantum-classical transition. While speculative, the AOM opens new avenues for addressing foundational questions in quantum mechanics, relativity, dimensionality, and the nature of reality.
文摘This paper introduces a groundbreaking synthesis of fundamental quantum mechanics with the Advanced Observer Model (AOM), presenting a unified framework that reimagines the construction of reality. AOM highlights the pivotal role of the observer in shaping reality, where classical notions of time, space, and energy are reexamined through the quantum lens. By engaging with key quantum equations—such as the Schrödinger equation, Heisenberg uncertainty principle, and Dirac equation—the paper demonstrates how AOM unifies the probabilistic nature of quantum mechanics with the determinism of classical physics. Central to this exploration is the Sequence of Quantum States (SQS) and Constant Frame Rate (CFR), which align with concepts like quantum superposition, entanglement, and wave function collapse. The model’s implications extend to how observers perceive reality, proposing that interference patterns between wave functions form the foundation of observable phenomena. By offering a fresh perspective on the interplay between determinacy and indeterminacy, AOM lays a robust theoretical foundation for future inquiry into quantum physics and the philosophy of consciousness.
文摘This paper presents the Advanced Observer Model (AOM), a groundbreaking conceptual framework designed to clarify the complex and often enigmatic nature of quantum mechanics. The AOM serves as a metaphorical lens, bringing the elusive quantum realm into sharper focus by transforming its inherent uncertainty into a coherent, structured ‘Frame Stream’ that aids in the understanding of quantum phenomena. While the AOM offers conceptual simplicity and clarity, it recognizes the necessity of a rigorous theoretical foundation to address the fundamental uncertainties that lie at the core of quantum mechanics. This paper seeks to illuminate those theoretical ambiguities, bridging the gap between the abstract insights of the AOM and the intricate mathematical foundations of quantum theory. By integrating the conceptual clarity of the AOM with the theoretical intricacies of quantum mechanics, this work aspires to deepen our understanding of this fascinating and elusive field.
文摘In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophisticated land-surface model (IAP94-GCM) are presented and compared with the observation. The comparison is made by using the equilibrium multiyear seasonal cycle climate from a 100-year integration. In the integration sea surface temperature (SST) and sea ice are taken from the observed climatological data (with seasonal variation) because our purpose is to see the improvement of simulation due to the coupling with an advanced land surface model. Overall, the IAP94-GCM provides a reasonably realistic simulation of the interseasonal and intraseasonal climatology of the Asian monsoon and yields an important information that sheds light on the thermal underpinning and the thermodynamics of the seasonal and even multiscale variabilities associated with the Asian summer monsoon.
基金supported by the National Key R&D Program of China[Grant number 2021YFB3901300]the ESA-NRSCC Dragon-5 cooperation project[ID 57979]+1 种基金the Agenzia Spaziale Italiana under the APPLICAVEMARS project[ASI contract n.2021-4-U.0]the China Scholarship Council.
文摘This paper contrasts predicted X-band sea surface backscattering from slick-free and oil-covered sea surfaces with actual measurements acquired by the X-band satellite TerraSAR-X and COSMO-SkyMed Synthetic Aperture Radar(SAR)missions.Two SAR scenes were acquired with a temporal difference of about 36 minutes,under similar met-ocean conditions,during the North Sea’s Gannet Alpha oil spill accident.The normalized radar cross section of the slick-free sea surface is predicted using the Advanced Integral Equation Model(AIEM)while the backscatter from the oiled sea surface is predicted by the AIEM augmented with the Model of Local Balance(MLB)to include the damping effect of oil slicks.Experimental results show that X-band co-polarized numerical predictions agree reasonably well with both TSX and CSK actual measurements collected over slick-free sea surfaces.When dealing with oil-covered sea surfaces,the predicted backscattering reasonably agrees with TSX measurements,while it overestimates the CSK ones.This is likely due to the different spreading conditions of the oil imaged by the two satellite missions.
基金supported by the National Natural Science Foundation of China(52107072).
文摘Demand response(DR)is usually regarded as a valuable balancing and reserve resource that contributes to maintaining power balance and integrating renewable energies.However,the price elasticity curve of the DR resources is influenced by consumers’behavioral uncertainty and therefore is difficult to predict.Consequently,additional risk may be introduced to composite power system reliability.Considering that,this paper investigates a reliability assessment of composite power system considering both the merits and potential uncertainty involved in the DR.First,the psychological behavior and consumption behavior of consumers are characterized in the DR modeling.A novel DR uncertainty index(denoted as I^(U))measures uncertainty of consumer’s behavior when electricity price changes.Then,an advanced Sigmoid cloud model is proposed to depict the comprehensive uncertain mapping relationships between price and I^(U).Moreover,an improved demand elasticity matrix is proposed,in which price-quantity elastic coefficients are modified by the I^(U)index.Finally,a reliability assessment framework for a composite power system is developed considering the uncertain price-based DR model and a k-means algorithm is used to accelerate the assessment process.Accuracy and effectiveness of the proposed method are investigated through the case study on RBTS,RTS79 and RTS96 reliability test systems.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)(No.107.02-2019.318)。
文摘The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures.
基金supported by the National Natural Science Foundation of China (Nos. 11805017 and 12001050)
文摘JMCT is a large-scale,high-fidelity,three-dimensional general neutron–photon–electron–proton transport Monte Carlo software system.It was developed based on the combinatorial geometry parallel infrastructure JCOGIN and the adaptive structured mesh infrastructure JASMIN.JMCT is equipped with CAD modeling and visualizes the image output.It supports the geometry of the body and the structured/unstructured mesh.JMCT has most functions,variance reduction techniques,and tallies of the traditional Monte Carlo particle transport codes.Two energy models,multi-group and continuous,are provided.In recent years,some new functions and algorithms have been developed,such as Doppler broadening on-thefly(OTF),uniform tally density(UTD),consistent adjoint driven importance sampling(CADIS),fast criticality search of boron concentration(FCSBC)domain decomposition(DD),adaptive control rod moving(ACRM),and random geometry(RG)etc.The JMCT is also coupled with the discrete ordinate SNcode JSNT to generate source-biasing factors and weight-window parameters.At present,the number of geometric bodies,materials,tallies,depletion zones,and parallel processors are sufficiently large to simulate extremely complicated device problems.JMCT can be used to simulate reactor physics,criticality safety analysis,radiation shielding,detector response,nuclear well logging,and dosimetry calculations etc.In particular,JMCT can be coupled with depletion and thermal-hydraulics for the simulation of reactor nuclear-hot feedback effects.This paper describes the progress in advanced modeling,high-performance numerical simulation of particle transport,multiphysics coupled calculations,and large-scale parallel computing.
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(XMXX280722)Special Fund of China Institute of Water Resources and Hydropower Research(2011)Open Fund of State Key Laboratory of Remote Sensing Science(OFSLRSS201105)
文摘In this paper, a new approach was introduced to estimate surface soil moisture using alternating polarization (AP) data of ad- vanced synthetic aperture radar (ASAR). First, synthetic aperture radar (SAR) backscattering characteristic of bare surface at C band was simulated using advanced integrated equation model (AIEM), and four bare surface backscattering models with different polarization were established. In addition, with simultaneous equations of the for- mer four formulas, the surface roughness was eliminated, and models used to estimate soil moisture on bare surface were derived from simulated multipolarization and multiangle ASAR-AP data. Based on these, the best combination of polarization and incident angle was determined. Finally, soil moisture in the middle stream of the Heihe River Basin was estimated. The field measured data demonstrated that the proposed method was capable of retrieving surface soil moisture for both sparse grassland and homogeneous farmland area.
基金Supported by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (NJZZ11069)the Natural Science Foundation of Inner Mongolia Autonomous Region (2011BS0904)
文摘In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-polarized backscattering coefficients accurately, we propose an empirical model to retrieve soil moisture for bare farmland only with co-polarized SAR data. The soil moisture can be obtained by solving an equation of HH and VV polarized data without any field measurements. Both simulated and real SAR data are used to validate the accuracy of the model. This method is especially effective in a large area where the surface roughness is difficult to be completely measured.
文摘1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental
文摘1.Summary and Scope Advanced batteries play a key role in the development of portable and wearable electronics,electric and hybrid vehicles,smart grids and back-up power sources,and many more emerging applications.In most cases,exploration of new and alternative battery materials starts from known literature and follows time-consuming trial-and-error experimental or modeling approaches.The Materials Genome Initiative was
基金Supported by the National Key Research and Development Program of China(2021YFC3101500)National Natural Science Foundation of China(42075149,42375155,and 62372460)Natural Science Foundation of Hunan Province of China(2023JJ40667)。
文摘The Advanced Radiative Transfer Modeling System(ARMS),a computationally efficient satellite observation operator,has been successfully integrated into the YinHe four-dimensional variational data assimilation(YH4DVAR)system.This study investigates the impacts of assimilating Advanced Microwave Sounding Unit-A(AMSU-A)observations from the Meteorological Operational Satellite-C(MetOp-C)on the performance of YH4DVAR.Through a month-long global statistical analysis and a case study of Typhoon Hinnamnor,we evaluate the benefits of AMSUA data assimilation under clear sky conditions.Key findings are as follows.(1)ARMS achieves simulation accuracy comparable to RTTOV(Radiative Transfer for the Television and InfraRed Observation Satellite Operational Vertical sounder)version 11.2,demonstrating only a 0.5%discrepancy in data retention after quality control.(2)Implementation of ARMS as an operator in YH4DVAR enhances forecast accuracy for the 850-hPa temperature and 500-hPa geopotential height in the tropical region.(3)Compared to RTTOV,ARMS has improved the intensity forecast of Typhoon Hinnamnor and reduced mean wind speed errors by approximately 2%and central pressure errors by approximately1%.ARMS has now been operationally adopted as an alternative observational operator within YH4DVAR,demonstrating exceptional numerical stability,computational efficiency,and promising potential for future satellite data assimilation applications.