Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and c...Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and competitive adsorption of the soils to heavy metals can affect their availability and movement through the soils. In this study, the simultaneous competitive adsorption of four heavy metals (Cd, Cu, Hg, and Pb) on ten agricultural soils collected from the Changjiang and Zhujiang deltas, China was assessed. The results showed that the competition affected the behavior of heavy metal cations in such a way that the soils adsorbed less Cd and Hg, and more Pb and Cu with increasing total metal concentrations, regardless of the molar concen- tration applied. As the applied concentrations increased, Pb and Cu adsorption increased, while Cd and Hg adsorption decreased. The adsorption sequence most found was Pb>Cu>Hg>Cd. The maximum adsorption capacity for the heavy metal cations was calculated, and affected markedly by soil properties. The results suggest that Hg and Cd have higher mobility associated to the lower adsorption and that Pb and Cu present the opposite behavior. Significant correlations were found between the maximum adsorption capacity of the metals and pH value and exchangeable acid, suggesting that soil pH and exchangeable acid were key factors controlling the solubility and mobility of the metals in the agricultural soils.展开更多
Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess...Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photo voltage. Due to the obvious "barrel effect",both dyes show medium PCE around8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photo voltage, and achieving the synergistic improvement in power conversion efficiency(PCE). Electronic impedance spectra(EIS) indicate that exploiting dye WS-39 with high V_(OC) value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior V_(OC) rather than using dye WS-2 with high J_(SC)as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye(around 8.48-8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells.展开更多
Both bottle-point and column-feeding experi-ments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic a...Both bottle-point and column-feeding experi-ments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic acid.Their adsorption isotherms onto such hypercrosslinked polymeric adsorbents as NDA-100 and NDA-99 could be well described by the Freundlich equations whose characteristics describe extrathermic and favorable adsorption processes.The adsorp-tion towards NDA-100 mainly depended on the p-p interac-tion,while that towards NDA-99 was extremely influenced by the static-electric interaction.Additionally,the adsorptive capacity of salicylic acid on NDA-99 decreased while it increased on NDA-100 with the presence of 5-sulfosalicylic acid in the adsorptive environment as the competitive component.Comparatively,the adsorption capacity of 5-sulfosalicylic acid decreased on both resins with salicylic acid as the competitive component.In fact,the difference in the interaction between adsorbent and adsorbate resulted in the straight antagonism on the effective adsorption sites on the adsorbent.In conclusion,the adsorption selectivity of salicylic acid onto NDA-100 was obviously larger than that onto NDA-99 with the existence of 5-sulfosalicylic acid in the adsorptive environment.A satisfactory separation and recovery of tested solutes in aqueous phase could be foresee-ably achieved by the sequencing adsorption technique involving NDA-100 as well as NDA-99.展开更多
基金Project supported by the National Basic Research Program (973) of China (Nos. 2005CB121104 and 2002CB410804)the National Natural Science Foundation of China (No. 40471064)the Natural Science Foundation of Zhejiang Province (No. R306011), China
文摘Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and competitive adsorption of the soils to heavy metals can affect their availability and movement through the soils. In this study, the simultaneous competitive adsorption of four heavy metals (Cd, Cu, Hg, and Pb) on ten agricultural soils collected from the Changjiang and Zhujiang deltas, China was assessed. The results showed that the competition affected the behavior of heavy metal cations in such a way that the soils adsorbed less Cd and Hg, and more Pb and Cu with increasing total metal concentrations, regardless of the molar concen- tration applied. As the applied concentrations increased, Pb and Cu adsorption increased, while Cd and Hg adsorption decreased. The adsorption sequence most found was Pb>Cu>Hg>Cd. The maximum adsorption capacity for the heavy metal cations was calculated, and affected markedly by soil properties. The results suggest that Hg and Cd have higher mobility associated to the lower adsorption and that Pb and Cu present the opposite behavior. Significant correlations were found between the maximum adsorption capacity of the metals and pH value and exchangeable acid, suggesting that soil pH and exchangeable acid were key factors controlling the solubility and mobility of the metals in the agricultural soils.
基金supported by NSFC for Creative Research Groups(21421004) and Distinguished Young Scholars(21325625),NSFC/ChinaOriental Scholarship+4 种基金Fundamental Research Funds for the Central Universities(WJ1416005 and WJ1315025)Scientific Committee of Shanghai(14ZR1409700and 15XD1501400)Programme of Introducing Talents of Discipline to Universities(B16017)Science Foundation for the Excellent Youth Scholars of Hebei Education Department(Y2012017)Science Foundation for Oversea Scholars of Hebei(C201400324)
文摘Cosensitization based on two or multiple dyes as "dye cocktails" can hit the target on compensating and broadening light-harvesting region.Two indoline D-A-π-A motif sensitizers(WS-2 and WS-39) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photo voltage. Due to the obvious "barrel effect",both dyes show medium PCE around8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photo voltage, and achieving the synergistic improvement in power conversion efficiency(PCE). Electronic impedance spectra(EIS) indicate that exploiting dye WS-39 with high V_(OC) value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior V_(OC) rather than using dye WS-2 with high J_(SC)as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye(around 8.48-8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells.
基金The work was supported by the Opening Fund of Key Laboratory of Environmental Engineering of Jiangsu Province,China(Grant No.KF0502)by the Opening Fund of Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection(Grant No.JLCBE05005).
文摘Both bottle-point and column-feeding experi-ments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic acid.Their adsorption isotherms onto such hypercrosslinked polymeric adsorbents as NDA-100 and NDA-99 could be well described by the Freundlich equations whose characteristics describe extrathermic and favorable adsorption processes.The adsorp-tion towards NDA-100 mainly depended on the p-p interac-tion,while that towards NDA-99 was extremely influenced by the static-electric interaction.Additionally,the adsorptive capacity of salicylic acid on NDA-99 decreased while it increased on NDA-100 with the presence of 5-sulfosalicylic acid in the adsorptive environment as the competitive component.Comparatively,the adsorption capacity of 5-sulfosalicylic acid decreased on both resins with salicylic acid as the competitive component.In fact,the difference in the interaction between adsorbent and adsorbate resulted in the straight antagonism on the effective adsorption sites on the adsorbent.In conclusion,the adsorption selectivity of salicylic acid onto NDA-100 was obviously larger than that onto NDA-99 with the existence of 5-sulfosalicylic acid in the adsorptive environment.A satisfactory separation and recovery of tested solutes in aqueous phase could be foresee-ably achieved by the sequencing adsorption technique involving NDA-100 as well as NDA-99.