To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
Local mate competition theory predicts that offspring sex ratio in pollinating fig wasps is female-biased when there is only one foundress, and increased foundress density results in increased offspring sex ratio. Inf...Local mate competition theory predicts that offspring sex ratio in pollinating fig wasps is female-biased when there is only one foundress, and increased foundress density results in increased offspring sex ratio. Information of other foundresses and clutch size have been suggested to be the main proximate explanations for sex ratio adjustment under local mate competition. Our focus was to show the mechanism of sex ratio adjustment in a pollinating fig wasp, Ceratosolen solmsi Mayr, an obligate pollinator of the functionally dioecious fig, Ficus hispida Linn., with controlled experiments in the field. First, we obtained offspring from one pollinator and offspring at different oviposition sequences, and found that offspring sex ratio decreased with clutch size, and pollinators produced most of their male offspring at the start of bouts, followed by mostly females. Second, we found that offspring sex ratio increased with foundress density, and pollinators did adjust their offspring sex ratio to other females in the oviposition patches. We suggest that when oviposition sites are not limited, pollinators will mainly adjust their offspring sex ratio to other foundresses independent of clutch size changes, whereas adjusting clutch size may be used to adjust sex ratio when oviposition sites are limited.展开更多
Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of t...Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of the aircraft,so as to achieve the purposes of increasing lift,reducing drag,suppressing vibration and reducing noise.Hailed as an important source of innovative development for aircraft,this technology provides a new technical approach to solve the aerodynamic problems of aircraft,signicantly improve their comprehensive performance,break throughight boundaries,and promote disruptive innovation in the next generation of aircraft.展开更多
Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom...Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
In 1993,the World Bank released a global report on the efficacy of health promotion,introducing the disability-adjusted life years(DALY)as a novel indicator.The DALY,a composite metric incorporating temporal and quali...In 1993,the World Bank released a global report on the efficacy of health promotion,introducing the disability-adjusted life years(DALY)as a novel indicator.The DALY,a composite metric incorporating temporal and qualitative data,is grounded in preferences regarding disability status.This review delineates the algorithm used to calculate the value of the proposed DALY synthetic indicator and elucidates key methodological challenges associated with its application.In contrast to the quality-adjusted life years approach,derived from multi-attribute utility theory,the DALY stands as an independent synthetic indicator that adopts the assumptions of the Time Trade Off utility technique to define Disability Weights.Claiming to rely on no mathematical or economic theory,DALY users appear to have exempted themselves from verifying whether this indicator meets the classical properties required of all indicators,notably content validity,reliability,specificity,and sensitivity.The DALY concept emerged primarily to facilitate comparisons of the health impacts of various diseases globally within the framework of the Global Burden of Disease initiative,leading to numerous publications in international literature.Despite widespread adoption,the DALY synthetic indicator has prompted significant methodological concerns since its inception,manifesting in inconsistent and non-reproducible results.Given the substantial diffusion of the DALY indicator and its critical role in health impact assessments,a reassessment is warranted.This reconsideration is imperative for enhancing the robustness and reliability of public health decisionmaking processes.展开更多
Urbanization is one of the most extreme forms of land-use alteration that is advancing across the world with unprecedented speed.As the largest developing country,China has developed a unique path through its high spe...Urbanization is one of the most extreme forms of land-use alteration that is advancing across the world with unprecedented speed.As the largest developing country,China has developed a unique path through its high speed and large scale of urbanization,offering valuable research opportunities for avian ecology.However,a comprehensive review on how birds respond to urbanization in China is still lacking.Here,we systematically reviewed 274 studies published from 1962 to 2024 to determine the research trends,current insights,and future directions of avian response to urbanization in China.We synthesized research trends across four core avian response dimensions to urbanization—diversity,behavior,physiology,and life-history—and their applications in conservation strategy design.The number of publications in avian response to urbanization in China increased annually,and it is influenced by China's developing policies of urbanization.The results also showed an unbalanced geographical pattern of the publications,as the research preferences are relatively prevalent in the developed areas of eastern China.In contrast,there are insufficient studies in the emerging urbanizing areas in the western and northeastern China.Regarding the research contents,most existing studies are focusing on the patterns of bird diversity,while there are few studies on the underlying mechanisms,such as physiological adjustments and life-history strategies.In addition,passerines are the most frequent ones among the studied species.Integrating multidimensional urbanization indices and citizen science data are gradually becoming a new trend in recent years.Our study emphasizes that future studies should pay more attention to the response mechanism of birds in urbanizing processes,multidimensional and interdisciplinary studies,and the transformation of the research results into conservation practices.展开更多
This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 yea...This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 years).The students completed the Interpersonal Adjustment Scale for College Students,Center for Epidemiological Studies Depression Scale,and Core Self-evaluation Scale.The results of Linear regression and mediated moderated effects modeling revealed that college students with higher interpersonal adjustment and core self-evaluation scores were at lower risk for depression.Core self-evaluation mediated the relationship between interpersonal adjustment and depression in college students for lower risk for depression.Gender moderated the relationship between interpersonal adjustment and core self-evaluation in college students for higher risk for depression in female students.From thesefindings,we conclude that interpersonal adjustment and core self-evaluation are significant for screening depression risk college students.Moreover,female students may benefit from targeted interventions aimed at their interpersonal adjustment for reducing their risk of depression.展开更多
Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incor...Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization.展开更多
Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we...Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we present a mechanically programmable acoustic metamaterial for real-time focal tuning via one-dimensional phase-gradient modulation in this paper.The device integrates a phase gradient structure with concave cavity channels and an x-shaped telescopic mechanical framework,enabling dynamic adjustment of inter-unit spacing(1 mm-3 mm)through a microcontroller-driven motor.By modulating the spacing between adjacent channels,the phase gradient is precisely controlled,allowing continuous focal shift from 50 mm to 300 mm along the x-axis at 7500 Hz.Broadband focusing is also discussed in the range6800 Hz-8100 Hz,with transmission coefficients exceeding 0.5,ensuring high efficiency and robust performance.Experimental results align closely with simulations,validating the design's effectiveness and adaptability.Unlike conventional programmable metamaterials requiring multi-dimensional parameter optimization,this approach simplifies real-time control through single-axis mechanical adjustment,significantly reducing operational complexity.Due to the advantages of broadband focusing,simple control mode,real-time monitoring,and so on,the device may have extensive applications in the fields of acoustic imaging,nondestructive testing,ultrasound medical treatment,etc.展开更多
The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear tr...The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear trains,the internal and external gear rings are designed.Based on the internal and external gear rings,the metamaterial based on inner and outer planetary gear trains(MIP)is designed to study the shear modulus,Young's modulus,and amplitude-frequency characteristics of the metamaterial based on gears at different angles.The effects of the number of planetary gears on the physical characteristics of the MIP are studied.The results show that the MEG can be continuously adjusted by adjusting the shear modulus and Young's modulus due to its meshing characteristics.With the same number of gears,the adjustment range of the MIP is larger than the adjustment range of the MEG.When the number of planetary gears increases,the adjustment range of the MIP decreases.Moreover,when the metamaterial based on gears rotates,the harmonic response changes with the change of the angle.展开更多
Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively ...Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.展开更多
The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both w...The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both within and outside the YRD,is essential for understanding city-cluster-scale ozone pollution(CCSOP).To address these concerns,a comprehensive approach combining Kolmogorov-Zurbenko filtering,Empirical Orthogonal Function,Absolute Principal Component Score,andMultiple Linear Regression methods(KZ-EOF-APCs-MLR)was employed to quantify the impacts of meteorological factors,local and non-local emission contributions of ozone(LECO and NECO).Emission changes were identified as the predominant factor shaping annual fluctuations in ambient ozone.Notably,during the previous andmiddle stages of the COVID-19 pandemic(from2017 to 2021),emissions reductions led to a marked decrease in YRD ozone levels(-7.01μg/m^(3)),with a pronounced rebound post-pandemic(2022 to 2023)(+8.04μg/m^(3)).Seasonally,the emissioninduced ozone exhibited fluctuating upward trend during autumn and winter,suggesting a transition of ozone pollution towards colder seasons.Spatially,high LECO concentrated in the eastern YRD(EYRD)across spring,autumn,and winter,becoming prominent in the central YRD(CYRD)during summer.During CCSOP,the CYRD exhibited the highest LECO and exceedance frequency(20.82μg/m^(3) and 45.27%).LECO explained a large portion of ozone variability during CCSOP,particularly in the EYRD,while NECO showed less explanatory power but consistently high contributions(148.05±15.52μg/m^(3)).These findings offer valuable insights for a deeper understanding of the evolving patterns of ozone pollution and the issue of CCSOP in the YRD.展开更多
BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To expl...BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To explore the differences in psychological adjustment patterns among ovarian cancer patients receiving surgery,chemotherapy,targeted therapy,and combined therapy,and to analyze their relationship with clinical outcomes.METHODS A retrospective analysis was conducted on the clinical data of 286 ovarian cancer patients who received different treatment modalities from January 2020 to December 2023.Patients were divided into surgery group(n=78),chemotherapy group(n=65),targeted therapy group(n=61),and combined therapy group(n=82).The Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Psychological Adjustment to Cancer Scale were used to assess psychological status,while quality of life,treatment adherence,and two-year survival rate data were collected.Some patients(n=76)received systematic psychological intervention,and the intervention effects were evaluated.RESULTS Patients in the combined therapy group had significantly higher Self-Rating Anxiety Scale(56.3±7.2)and Self-Rating Depression Scale(58.4±6.9)scores than other groups,with the highest incidence of anxiety(58.5%)and depression(62.2%);the targeted therapy group scored highest in the positive coping dimension(28.5±3.6)and had the lowest incidence of anxiety and depression(29.5%/31.1%).Logistic regression analysis showed that positive coping(odds ratio=2.86,95%confidence interval:1.75-4.68)and utilization of social support(odds ratio=2.13,95%confidence interval:1.42-3.56)were protective factors for good treatment adherence.Longitudinal assessment showed that although all patients experienced increased anxiety and depression symptoms at 3 months of treatment,the targeted therapy group and surgery group showed significant improvement at 6 months(P<0.05),while the combined therapy group showed no significant improvement.Psychological intervention effectively improved patients’treatment adherence(by 22.7%)and quality of life(by 15.6 points),with the best effect in the combined therapy group(anxiety incidence decreased by 30.5%,P<0.001).CONCLUSION Different treatment modalities significantly affect the psychological adjustment abilities of ovarian cancer patients,with combined therapy patients facing greater psychological challenges,while targeted therapy patients exhibit healthier psychological adjustment patterns.展开更多
Objective The treatment of Wilms’tumor(WT)in children largely relies on a multidisciplinary strategy.In the absence of an appropriate multidisciplinary team,we reviewed the data of children with WT to determine their...Objective The treatment of Wilms’tumor(WT)in children largely relies on a multidisciplinary strategy.In the absence of an appropriate multidisciplinary team,we reviewed the data of children with WT to determine their outcomes.The primary goal of the study was to highlight the role that a pediatric oncologist plays in the management of WT in low-and middle-income countries,taking into account the variety of initial treatments available,the lack of multidisciplinary care,and management strategies to overcome obstacles.Methods Retrospective recruitment was used to identify patients,aged 18 years or under,with WT diagnosis,in a major tertiary hospital in Iraq between January 2014 and December 2021.Initially,patients were treated with a pretreatment biopsy,preoperative chemotherapy,or upfront nephrectomy.Results In this study,54 patients were enrolled.The median age was 3.3 years.The numbers of patients with stages I and III are 24(44%)and 12(22%),respectively.Seven patients had pretreatment biopsies.In 23 patients,upfront nephrectomy was performed.The histology of only two patients was unfavorable.In 20 patients,intraoperative complications were not disclosed.The mean 3-year estimated event-free survival was 64%(standard deviation 6.6%)and the mean overall survival was 76%(standard deviation 6.8%).There was a significant statistical difference according to stages of disease(p<0.001).Compared with the extended study until December 2021,the overall survival of the previous study from January 2014 to December 2017 was only 40%.Conclusion Promising results for pediatric WT can be attained in low-and middle-income nations.Acquiring an evidence-based strategy tailored to a low-and middle-income country and a multidisciplinary approach may escalate the outcome.展开更多
Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face...Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
文摘Local mate competition theory predicts that offspring sex ratio in pollinating fig wasps is female-biased when there is only one foundress, and increased foundress density results in increased offspring sex ratio. Information of other foundresses and clutch size have been suggested to be the main proximate explanations for sex ratio adjustment under local mate competition. Our focus was to show the mechanism of sex ratio adjustment in a pollinating fig wasp, Ceratosolen solmsi Mayr, an obligate pollinator of the functionally dioecious fig, Ficus hispida Linn., with controlled experiments in the field. First, we obtained offspring from one pollinator and offspring at different oviposition sequences, and found that offspring sex ratio decreased with clutch size, and pollinators produced most of their male offspring at the start of bouts, followed by mostly females. Second, we found that offspring sex ratio increased with foundress density, and pollinators did adjust their offspring sex ratio to other females in the oviposition patches. We suggest that when oviposition sites are not limited, pollinators will mainly adjust their offspring sex ratio to other foundresses independent of clutch size changes, whereas adjusting clutch size may be used to adjust sex ratio when oviposition sites are limited.
文摘Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of the aircraft,so as to achieve the purposes of increasing lift,reducing drag,suppressing vibration and reducing noise.Hailed as an important source of innovative development for aircraft,this technology provides a new technical approach to solve the aerodynamic problems of aircraft,signicantly improve their comprehensive performance,break throughight boundaries,and promote disruptive innovation in the next generation of aircraft.
基金supported by the National Natural Science Foundation of China(Grant No.41875126)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)。
文摘Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
文摘In 1993,the World Bank released a global report on the efficacy of health promotion,introducing the disability-adjusted life years(DALY)as a novel indicator.The DALY,a composite metric incorporating temporal and qualitative data,is grounded in preferences regarding disability status.This review delineates the algorithm used to calculate the value of the proposed DALY synthetic indicator and elucidates key methodological challenges associated with its application.In contrast to the quality-adjusted life years approach,derived from multi-attribute utility theory,the DALY stands as an independent synthetic indicator that adopts the assumptions of the Time Trade Off utility technique to define Disability Weights.Claiming to rely on no mathematical or economic theory,DALY users appear to have exempted themselves from verifying whether this indicator meets the classical properties required of all indicators,notably content validity,reliability,specificity,and sensitivity.The DALY concept emerged primarily to facilitate comparisons of the health impacts of various diseases globally within the framework of the Global Burden of Disease initiative,leading to numerous publications in international literature.Despite widespread adoption,the DALY synthetic indicator has prompted significant methodological concerns since its inception,manifesting in inconsistent and non-reproducible results.Given the substantial diffusion of the DALY indicator and its critical role in health impact assessments,a reassessment is warranted.This reconsideration is imperative for enhancing the robustness and reliability of public health decisionmaking processes.
基金supported by the National Natural Science Foundation of China(No.32271743)。
文摘Urbanization is one of the most extreme forms of land-use alteration that is advancing across the world with unprecedented speed.As the largest developing country,China has developed a unique path through its high speed and large scale of urbanization,offering valuable research opportunities for avian ecology.However,a comprehensive review on how birds respond to urbanization in China is still lacking.Here,we systematically reviewed 274 studies published from 1962 to 2024 to determine the research trends,current insights,and future directions of avian response to urbanization in China.We synthesized research trends across four core avian response dimensions to urbanization—diversity,behavior,physiology,and life-history—and their applications in conservation strategy design.The number of publications in avian response to urbanization in China increased annually,and it is influenced by China's developing policies of urbanization.The results also showed an unbalanced geographical pattern of the publications,as the research preferences are relatively prevalent in the developed areas of eastern China.In contrast,there are insufficient studies in the emerging urbanizing areas in the western and northeastern China.Regarding the research contents,most existing studies are focusing on the patterns of bird diversity,while there are few studies on the underlying mechanisms,such as physiological adjustments and life-history strategies.In addition,passerines are the most frequent ones among the studied species.Integrating multidimensional urbanization indices and citizen science data are gradually becoming a new trend in recent years.Our study emphasizes that future studies should pay more attention to the response mechanism of birds in urbanizing processes,multidimensional and interdisciplinary studies,and the transformation of the research results into conservation practices.
基金supported by the Education Working Committee of the Xinjiang Uygur Autonomous Region Party Committee(grant number 2023GZYB10).
文摘This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 years).The students completed the Interpersonal Adjustment Scale for College Students,Center for Epidemiological Studies Depression Scale,and Core Self-evaluation Scale.The results of Linear regression and mediated moderated effects modeling revealed that college students with higher interpersonal adjustment and core self-evaluation scores were at lower risk for depression.Core self-evaluation mediated the relationship between interpersonal adjustment and depression in college students for lower risk for depression.Gender moderated the relationship between interpersonal adjustment and core self-evaluation in college students for higher risk for depression in female students.From thesefindings,we conclude that interpersonal adjustment and core self-evaluation are significant for screening depression risk college students.Moreover,female students may benefit from targeted interventions aimed at their interpersonal adjustment for reducing their risk of depression.
基金funding support by the Changsha Natural Science Foundation(grant no.kq2208023)National Natural Scientific Foundation of China(grant no.12074113).
文摘Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization.
基金supported by the National Natural Science Foundation of China(Grant No.12374416)。
文摘Adjustable or programmable metamaterials offer versatile functions,while the complex multi-dimensional regulation increases workload,and hinders their applications in practical scenarios.To address these challenges,we present a mechanically programmable acoustic metamaterial for real-time focal tuning via one-dimensional phase-gradient modulation in this paper.The device integrates a phase gradient structure with concave cavity channels and an x-shaped telescopic mechanical framework,enabling dynamic adjustment of inter-unit spacing(1 mm-3 mm)through a microcontroller-driven motor.By modulating the spacing between adjacent channels,the phase gradient is precisely controlled,allowing continuous focal shift from 50 mm to 300 mm along the x-axis at 7500 Hz.Broadband focusing is also discussed in the range6800 Hz-8100 Hz,with transmission coefficients exceeding 0.5,ensuring high efficiency and robust performance.Experimental results align closely with simulations,validating the design's effectiveness and adaptability.Unlike conventional programmable metamaterials requiring multi-dimensional parameter optimization,this approach simplifies real-time control through single-axis mechanical adjustment,significantly reducing operational complexity.Due to the advantages of broadband focusing,simple control mode,real-time monitoring,and so on,the device may have extensive applications in the fields of acoustic imaging,nondestructive testing,ultrasound medical treatment,etc.
基金supported by the Guangxi Science and Technology Major Program of China(Nos.AA23073019 and AA24263074)the National Natural Science Foundation of China(No.52265004)+7 种基金the Guangxi Natural Science Fund for Distinguished Young Scholars of China(No.2024JJG160014)the Innovation Project of Guangxi Graduate Education of China(No.YCSW2024119)the Open Fund of State Key Laboratory of Intelligent Manufacturing Equipment and Technology of China(No.IMETKF2025021)the Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance-Central South University of China(No.Kfkt2023-06)the Open Fund of High-end Basic Component Innovation Station of China(No.KY01080030124001)the Open Fund for Academician Mao Ming's Workstation of China(No.XSJSFW-QNKXJ-202404-007)the Technology Innovation Platform Project of China Aviation Engine Group Corporation(No.CXPT-2023-044)the Open Fund for Innovation Workstation in the National Defense Science and Technology Innovation Special Zone(Xi'an Jiaotong University).
文摘The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear trains,the internal and external gear rings are designed.Based on the internal and external gear rings,the metamaterial based on inner and outer planetary gear trains(MIP)is designed to study the shear modulus,Young's modulus,and amplitude-frequency characteristics of the metamaterial based on gears at different angles.The effects of the number of planetary gears on the physical characteristics of the MIP are studied.The results show that the MEG can be continuously adjusted by adjusting the shear modulus and Young's modulus due to its meshing characteristics.With the same number of gears,the adjustment range of the MIP is larger than the adjustment range of the MEG.When the number of planetary gears increases,the adjustment range of the MIP decreases.Moreover,when the metamaterial based on gears rotates,the harmonic response changes with the change of the angle.
文摘Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037)the National Key Research and Development Programof China(No.2022YFC3700303).
文摘The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both within and outside the YRD,is essential for understanding city-cluster-scale ozone pollution(CCSOP).To address these concerns,a comprehensive approach combining Kolmogorov-Zurbenko filtering,Empirical Orthogonal Function,Absolute Principal Component Score,andMultiple Linear Regression methods(KZ-EOF-APCs-MLR)was employed to quantify the impacts of meteorological factors,local and non-local emission contributions of ozone(LECO and NECO).Emission changes were identified as the predominant factor shaping annual fluctuations in ambient ozone.Notably,during the previous andmiddle stages of the COVID-19 pandemic(from2017 to 2021),emissions reductions led to a marked decrease in YRD ozone levels(-7.01μg/m^(3)),with a pronounced rebound post-pandemic(2022 to 2023)(+8.04μg/m^(3)).Seasonally,the emissioninduced ozone exhibited fluctuating upward trend during autumn and winter,suggesting a transition of ozone pollution towards colder seasons.Spatially,high LECO concentrated in the eastern YRD(EYRD)across spring,autumn,and winter,becoming prominent in the central YRD(CYRD)during summer.During CCSOP,the CYRD exhibited the highest LECO and exceedance frequency(20.82μg/m^(3) and 45.27%).LECO explained a large portion of ozone variability during CCSOP,particularly in the EYRD,while NECO showed less explanatory power but consistently high contributions(148.05±15.52μg/m^(3)).These findings offer valuable insights for a deeper understanding of the evolving patterns of ozone pollution and the issue of CCSOP in the YRD.
文摘BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To explore the differences in psychological adjustment patterns among ovarian cancer patients receiving surgery,chemotherapy,targeted therapy,and combined therapy,and to analyze their relationship with clinical outcomes.METHODS A retrospective analysis was conducted on the clinical data of 286 ovarian cancer patients who received different treatment modalities from January 2020 to December 2023.Patients were divided into surgery group(n=78),chemotherapy group(n=65),targeted therapy group(n=61),and combined therapy group(n=82).The Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Psychological Adjustment to Cancer Scale were used to assess psychological status,while quality of life,treatment adherence,and two-year survival rate data were collected.Some patients(n=76)received systematic psychological intervention,and the intervention effects were evaluated.RESULTS Patients in the combined therapy group had significantly higher Self-Rating Anxiety Scale(56.3±7.2)and Self-Rating Depression Scale(58.4±6.9)scores than other groups,with the highest incidence of anxiety(58.5%)and depression(62.2%);the targeted therapy group scored highest in the positive coping dimension(28.5±3.6)and had the lowest incidence of anxiety and depression(29.5%/31.1%).Logistic regression analysis showed that positive coping(odds ratio=2.86,95%confidence interval:1.75-4.68)and utilization of social support(odds ratio=2.13,95%confidence interval:1.42-3.56)were protective factors for good treatment adherence.Longitudinal assessment showed that although all patients experienced increased anxiety and depression symptoms at 3 months of treatment,the targeted therapy group and surgery group showed significant improvement at 6 months(P<0.05),while the combined therapy group showed no significant improvement.Psychological intervention effectively improved patients’treatment adherence(by 22.7%)and quality of life(by 15.6 points),with the best effect in the combined therapy group(anxiety incidence decreased by 30.5%,P<0.001).CONCLUSION Different treatment modalities significantly affect the psychological adjustment abilities of ovarian cancer patients,with combined therapy patients facing greater psychological challenges,while targeted therapy patients exhibit healthier psychological adjustment patterns.
文摘Objective The treatment of Wilms’tumor(WT)in children largely relies on a multidisciplinary strategy.In the absence of an appropriate multidisciplinary team,we reviewed the data of children with WT to determine their outcomes.The primary goal of the study was to highlight the role that a pediatric oncologist plays in the management of WT in low-and middle-income countries,taking into account the variety of initial treatments available,the lack of multidisciplinary care,and management strategies to overcome obstacles.Methods Retrospective recruitment was used to identify patients,aged 18 years or under,with WT diagnosis,in a major tertiary hospital in Iraq between January 2014 and December 2021.Initially,patients were treated with a pretreatment biopsy,preoperative chemotherapy,or upfront nephrectomy.Results In this study,54 patients were enrolled.The median age was 3.3 years.The numbers of patients with stages I and III are 24(44%)and 12(22%),respectively.Seven patients had pretreatment biopsies.In 23 patients,upfront nephrectomy was performed.The histology of only two patients was unfavorable.In 20 patients,intraoperative complications were not disclosed.The mean 3-year estimated event-free survival was 64%(standard deviation 6.6%)and the mean overall survival was 76%(standard deviation 6.8%).There was a significant statistical difference according to stages of disease(p<0.001).Compared with the extended study until December 2021,the overall survival of the previous study from January 2014 to December 2017 was only 40%.Conclusion Promising results for pediatric WT can be attained in low-and middle-income nations.Acquiring an evidence-based strategy tailored to a low-and middle-income country and a multidisciplinary approach may escalate the outcome.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC3008001)the National Natural Science Foundation of China(Grant No.52371357)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515240035)。
文摘Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.