The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a ...The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.展开更多
基于中尺度天气研究与预报(Weather Research and Forecasting,WRF)模式和区域多尺度空气质量(Community Multiscale Air Quality,CMAQ)模式及其伴随(ADJOINT)模式(WRF-CMAQ/ADJOINT模式)对2019年9月海南一次持续10日(9月21-30日)的臭氧...基于中尺度天气研究与预报(Weather Research and Forecasting,WRF)模式和区域多尺度空气质量(Community Multiscale Air Quality,CMAQ)模式及其伴随(ADJOINT)模式(WRF-CMAQ/ADJOINT模式)对2019年9月海南一次持续10日(9月21-30日)的臭氧(O_(3))污染事件进行模拟,对O_(3)污染进行来源解析,量化不同区域和物种排放源对O_(3)污染事件的贡献。结果表明:(1)污染事件期间,臭氧日最大8小时(MDA8-O_(3))平均质量浓度为167μg·m^(-3),其中MDA8-O_(3)峰值质量浓度达到186.1μg·m^(-3)。(2)WRF-CMAQ/ADJOINT模式能够较好模拟海南此次污染事件的O_(3)质量浓度变化过程,伴随模式揭示远距离区域传输是此次O_(3)污染的主要来源,其中海南外排放源平均贡献占比85%,本地排放源平均贡献占比15%,海南外排放源的贡献集中在珠三角地区。(3)对挥发性有机物(volatile organic compounds,VOCs)排放物种来源分析结果表明,异戊二烯在VOCs排放源中贡献最高,平均贡献占比为51%。此次O_(3)污染事件期间海南主要处于NO_(x)控制区,仅有海口处于VOCs和NO_(x)的协同控制区。由于远距离区域传输是此次O_(3)污染事件的主要来源,未来海南和珠三角的区域联防联控对于提高海南空气质量具有重要意义。展开更多
Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the...Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.展开更多
The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity desig...The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.展开更多
The challenge of establishing top-down constraints for regional emissions of fossil fuel CO_(2)(FFCO_(2))arises from the difficulty in distinguishing between atmospheric CO_(2)concentrations released from fossil fuels...The challenge of establishing top-down constraints for regional emissions of fossil fuel CO_(2)(FFCO_(2))arises from the difficulty in distinguishing between atmospheric CO_(2)concentrations released from fossil fuels and background variability,particularly owing to the influence of terrestrial biospheric fluxes.This necessitates the development of a regional inversion methodology based on atmospheric CO_(2)observations to verify bottom-up estimations independently.This study presents a promising approach for estimating China's FFCO_(2)emissions by incorporating the model residual errors(MREs)of the column-averaged dry-air mole fractions of CO_(2)(XCO_(2))from FFCO_(2)emissions(MREff)retained in the analysis of natural flux optimization.China's FFCO_(2)emissions during the COVID-19 lockdown in 2020 are estimated using the GEOS-Chem adjoint model.The relationship between the MREff and FFCO_(2)is determined using the model based on a regional FFCO_(2)anomaly suggested by posterior NOx emissions from air-quality data assimilation.The MREff is typically one-tenth in magnitude,but some positively skewed outliers exceed 1 ppm because the prior emissions lack lockdown impacts,thereby exerting considerable observation forcing given the satellite retrieval uncertainties.We initialize the FFCO_(2)with posterior NOx emissions and optimize the colinear emission ratio.Synthetic data experiments demonstrate that this approach reduces the FFCO_(2)bias to less than 10%.The real-data experiments estimate 19%lower FFCO_(2)with GOSAT XCO_(2)and 26%lower with OCO-2 XCO_(2)than the bottom-up estimations.This study proves the feasibility of our regional FFCO_(2)inversion,highlighting the importance of addressing the outlier behaviors observed in satellite XCO_(2)retrievals.展开更多
In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation anal...In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation analysis on two typical co-pollution events in Beijing,occurring from July 22 to July 28,2019,and from April 25 to May 2,2020.These events were categorized into pre-trough southerly airflow type(Type 1)and post-trough northwest flow type(Type 2).Subsequently,sensitivity analyses using the GRAPES-CUACE adjoint model were performed to quantify the contributions of precursor emissions from Beijing and surrounding areas to PM_(2.5)and O_(3) concentrations in Beijing for two types of co-pollution.The results indicated that the spatiotemporal distribution of sensitive source region varied among different circulation types.Primary PM_(2.5)(PPM_(2.5))emissions from Hebei contributed the most to the 24-hour average PM_(2.5)(24-h PM_(2.5))peak concentration(41.6%-45.4%),followed by Beijing emissions(31%-35.7%).The maximum daily 8-hour average ozone peak concentration was primarily influenced by the emissions from Hebei and Beijing,with contribution ratios respectively of 32.8%-44.8% and 29%-42.1%.Additionally,NO_(x)emissions were the main contributors in Type 1,while both NO_(x)and VOCs emissions contributed similarly in Type 2.The iterative emission reduction experiments for two types of co-pollution indicated that Type 1 required emission reductions in NO_(x)(52.4%-71.8%)and VOCs(14.1%-33.8%)only.In contrast,Type 2 required combined emission reductions in NO_(x)(37.0%-65.1%),VOCs(30.7%-56.2%),and PPM_(2.5)(31%-46.9%).This study provided a reference for controlling co-pollution events and improving air quality in Beijing.展开更多
The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint ...The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint methods are coupled in parallel to compute Pareto front collaboratively. Conversely in a Nash game,adjoint methods are coupled in each player s decision making to achieve Nash equilibrium competitively. In Stackelberg game,adjoint methods used by players are nested hierarchically through incomp...展开更多
In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dyna...In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.展开更多
The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each q...The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix. It is proved that any two semi-positive definite Hermitian quaternion matrices can be simultaneously diagonalized by congruence.展开更多
Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfu...Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.展开更多
Manufactured blades are inevitably different from their design intent,which leads to a deviation of the performance from the intended value.To quantify the associated performance uncertainty,many approaches have been ...Manufactured blades are inevitably different from their design intent,which leads to a deviation of the performance from the intended value.To quantify the associated performance uncertainty,many approaches have been developed.The traditional Monte Carlo method based on a Computational Fluid Dynamics solver(MC-CFD)for a three-dimensional compressor is prohibitively expensive.Existing alternatives to the MC-CFD,such as surrogate models and secondorder derivatives based on the adjoint method,can greatly reduce the computational cost.Nevertheless,they will encounter’the curse of dimensionality’except for the linear model based on the adjoint gradient(called MC-adj-linear).However,the MC-adj-linear model neglects the nonlinearity of the performance function.In this work,an improved method is proposed to circumvent the lowaccuracy problem of the MC-adj-linear without incurring the high cost of other alternative models.The method is applied to the study of the aerodynamic performance of an annular transonic compressor cascade,subject to prescribed geometric variability with industrial relevance.It is found that the proposed method achieves a significant accuracy improvement over the MC-adj-linear with low computational cost,showing the great potential for fast uncertainty quantification.展开更多
In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TO...In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of China's Mainland, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.展开更多
Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ...Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.展开更多
Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvan...Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR.展开更多
Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of s...Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.展开更多
Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The object...Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection.展开更多
The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of t...The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced,verified and validated in the study.The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the nonlinear performance changes.The gradients of objective performance function to the design parameters are calculated first for all the training samples,from which the gradients of cost function can be fast determined.To reveal the high efficiency and high accuracy of SAGB on gradient calculation,the number of flow computations needed is evaluated and compared with three other methods.Through the aerodynamic design optimization of a transonic turbine cascade minimizing total pressure loss at the outlet,the SAGB-based gradients of the base and optimized blades are compared with those obtained by the Monte Carlo-assisted finite difference method.Moreover,the results of both the robust and deterministic aerodynamic design optimizations are presented and compared to demonstrate the practicability of SAGB on improving the aerodynamic robustness of turbomachinery blades.展开更多
文摘The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.
文摘基于中尺度天气研究与预报(Weather Research and Forecasting,WRF)模式和区域多尺度空气质量(Community Multiscale Air Quality,CMAQ)模式及其伴随(ADJOINT)模式(WRF-CMAQ/ADJOINT模式)对2019年9月海南一次持续10日(9月21-30日)的臭氧(O_(3))污染事件进行模拟,对O_(3)污染进行来源解析,量化不同区域和物种排放源对O_(3)污染事件的贡献。结果表明:(1)污染事件期间,臭氧日最大8小时(MDA8-O_(3))平均质量浓度为167μg·m^(-3),其中MDA8-O_(3)峰值质量浓度达到186.1μg·m^(-3)。(2)WRF-CMAQ/ADJOINT模式能够较好模拟海南此次污染事件的O_(3)质量浓度变化过程,伴随模式揭示远距离区域传输是此次O_(3)污染的主要来源,其中海南外排放源平均贡献占比85%,本地排放源平均贡献占比15%,海南外排放源的贡献集中在珠三角地区。(3)对挥发性有机物(volatile organic compounds,VOCs)排放物种来源分析结果表明,异戊二烯在VOCs排放源中贡献最高,平均贡献占比为51%。此次O_(3)污染事件期间海南主要处于NO_(x)控制区,仅有海口处于VOCs和NO_(x)的协同控制区。由于远距离区域传输是此次O_(3)污染事件的主要来源,未来海南和珠三角的区域联防联控对于提高海南空气质量具有重要意义。
基金supported by the National Science and Technology Major Project,China(No.Y2019-I-0018-0017)the National Natural Science Foundation of China(No.11602200)+1 种基金Hunan Innovative Province Construction Special Fund,China(No.2021GK1020)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Propeller design is a highly intricate and interdisciplinary task that necessitates careful trade-offs between radiated noise levels and aerodynamic efficiency.To achieve efficient trade-off designs,an enhanced on-the-fly unsteady adjoint-based aerodynamic and aeroacoustic optimization methodology is developed,which maintains the fidelity of the Navier-Stokes solution for unsteady flow and of the moving-medium Ffowcs Williams-Hawkings(FW-H)formulation for capturing tonal noise.Furthermore,this on-the-fly approach enables a unified architecture for discreteadjoint sensitivity analysis encompassing both aerodynamics and aeroacoustics,facilitating effective multi-objective weighted optimizations.Subsequently,this proposed methodology is applied to perform trade-off optimizations between aerodynamics and aeroacoustics for a propeller by employing varying weighting factors to comprehend their influence on optimal configurations.The results demonstrate a positive correlation between efficiency and noise sensitivities,and thus indicate an inherent synchronicity where pursing noise reduction through purely aeroacoustic optimization inevitably entails sacrificing aerodynamic efficiency.However,by effectively incorporating appropriate weighting factors(recommended to range from 0.25 to 0.5)into the multi-objective function combined with both aerodynamics and aeroacoustics,it becomes feasible to achieve efficiency enhancement and noise reduction simultaneously.Key findings show that reducing blade planform size and equipping“rotated-S”shaped airfoil profiles in the tip region can effectively restrain noise levels while maintaining aerodynamic performance.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB3002800).
文摘The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.
基金jointly supported by the National Key Research and Development Plan(Grant No.2023YFB3907405)the National Natural Science Foundation of China(Grant No.42175132)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-037)。
文摘The challenge of establishing top-down constraints for regional emissions of fossil fuel CO_(2)(FFCO_(2))arises from the difficulty in distinguishing between atmospheric CO_(2)concentrations released from fossil fuels and background variability,particularly owing to the influence of terrestrial biospheric fluxes.This necessitates the development of a regional inversion methodology based on atmospheric CO_(2)observations to verify bottom-up estimations independently.This study presents a promising approach for estimating China's FFCO_(2)emissions by incorporating the model residual errors(MREs)of the column-averaged dry-air mole fractions of CO_(2)(XCO_(2))from FFCO_(2)emissions(MREff)retained in the analysis of natural flux optimization.China's FFCO_(2)emissions during the COVID-19 lockdown in 2020 are estimated using the GEOS-Chem adjoint model.The relationship between the MREff and FFCO_(2)is determined using the model based on a regional FFCO_(2)anomaly suggested by posterior NOx emissions from air-quality data assimilation.The MREff is typically one-tenth in magnitude,but some positively skewed outliers exceed 1 ppm because the prior emissions lack lockdown impacts,thereby exerting considerable observation forcing given the satellite retrieval uncertainties.We initialize the FFCO_(2)with posterior NOx emissions and optimize the colinear emission ratio.Synthetic data experiments demonstrate that this approach reduces the FFCO_(2)bias to less than 10%.The real-data experiments estimate 19%lower FFCO_(2)with GOSAT XCO_(2)and 26%lower with OCO-2 XCO_(2)than the bottom-up estimations.This study proves the feasibility of our regional FFCO_(2)inversion,highlighting the importance of addressing the outlier behaviors observed in satellite XCO_(2)retrievals.
基金supported by the National Key Research and Development Program of China(No.2022YFC3701205)the National Natural Science Foundation of China(No.41975173)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(No.2021KJ011)。
文摘In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation analysis on two typical co-pollution events in Beijing,occurring from July 22 to July 28,2019,and from April 25 to May 2,2020.These events were categorized into pre-trough southerly airflow type(Type 1)and post-trough northwest flow type(Type 2).Subsequently,sensitivity analyses using the GRAPES-CUACE adjoint model were performed to quantify the contributions of precursor emissions from Beijing and surrounding areas to PM_(2.5)and O_(3) concentrations in Beijing for two types of co-pollution.The results indicated that the spatiotemporal distribution of sensitive source region varied among different circulation types.Primary PM_(2.5)(PPM_(2.5))emissions from Hebei contributed the most to the 24-hour average PM_(2.5)(24-h PM_(2.5))peak concentration(41.6%-45.4%),followed by Beijing emissions(31%-35.7%).The maximum daily 8-hour average ozone peak concentration was primarily influenced by the emissions from Hebei and Beijing,with contribution ratios respectively of 32.8%-44.8% and 29%-42.1%.Additionally,NO_(x)emissions were the main contributors in Type 1,while both NO_(x)and VOCs emissions contributed similarly in Type 2.The iterative emission reduction experiments for two types of co-pollution indicated that Type 1 required emission reductions in NO_(x)(52.4%-71.8%)and VOCs(14.1%-33.8%)only.In contrast,Type 2 required combined emission reductions in NO_(x)(37.0%-65.1%),VOCs(30.7%-56.2%),and PPM_(2.5)(31%-46.9%).This study provided a reference for controlling co-pollution events and improving air quality in Beijing.
基金National Natural Science Foundation of China (10872093)
文摘The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint methods are coupled in parallel to compute Pareto front collaboratively. Conversely in a Nash game,adjoint methods are coupled in each player s decision making to achieve Nash equilibrium competitively. In Stackelberg game,adjoint methods used by players are nested hierarchically through incomp...
文摘In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.
文摘The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix. It is proved that any two semi-positive definite Hermitian quaternion matrices can be simultaneously diagonalized by congruence.
基金the Ministry of Science and Technology of China for funding the 973 project (Grant No. 2004CB418304) the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector [Grant No. GYHY(QX)2007-6-15]
文摘Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.
基金funded by the National Natural Science Foundation of China(No.52006177)National Science and Technology Major Project,China(No.2017-II-0009-0023)。
文摘Manufactured blades are inevitably different from their design intent,which leads to a deviation of the performance from the intended value.To quantify the associated performance uncertainty,many approaches have been developed.The traditional Monte Carlo method based on a Computational Fluid Dynamics solver(MC-CFD)for a three-dimensional compressor is prohibitively expensive.Existing alternatives to the MC-CFD,such as surrogate models and secondorder derivatives based on the adjoint method,can greatly reduce the computational cost.Nevertheless,they will encounter’the curse of dimensionality’except for the linear model based on the adjoint gradient(called MC-adj-linear).However,the MC-adj-linear model neglects the nonlinearity of the performance function.In this work,an improved method is proposed to circumvent the lowaccuracy problem of the MC-adj-linear without incurring the high cost of other alternative models.The method is applied to the study of the aerodynamic performance of an annular transonic compressor cascade,subject to prescribed geometric variability with industrial relevance.It is found that the proposed method achieves a significant accuracy improvement over the MC-adj-linear with low computational cost,showing the great potential for fast uncertainty quantification.
文摘In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of China's Mainland, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.
文摘Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.
基金supported by the National Natural Science Foundation of China(No.61473012)。
文摘Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR.
文摘Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.
基金funded by the Aeronautical Science Foundation of China–China(No.2010ZB51023)
文摘Abstract A first study on the continuous adjoint formulation for aerodynamic optimization design of high pressure turbines based on S2 surface governed by the Euler equations with source terms is presented. The objective function is defined as an integral function along the boundaries, and the adjoint equations and the boundary conditions are derived by introducing the adjoint variable vec- tors. The gradient expression of the objective function then includes only the terms related to phys- ical shape variations. The numerical solution of the adjoint equation is conducted by a finite- difference method with the Jameson spatial scheme employing the first and the third order dissipa- tive fluxes. A gradient-based aerodynamic optimization system is established by integrating the blade stagger angles, the stacking lines and the passage perturbation parameterization with the quasi-Newton method of Broyden Fletcher Goldfarb-Shanno (BFGS). The application of the continuous adjoint method is validated through a single stage high pressure turbine optimization case. The adiabatic efficiency increases from 0.8875 to 0.8931, whilst the mass flow rate and the pressure ratio remain almost unchanged. The optimization design is shown to reduce the passage vortex loss as well as the mixing loss due to the cooling air injection.
基金National Natural Science Foundation of China(Nos.51676003,51976183)National Science and Technology Major Project of China(No.J2019II-0012-0032)。
文摘The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced,verified and validated in the study.The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the nonlinear performance changes.The gradients of objective performance function to the design parameters are calculated first for all the training samples,from which the gradients of cost function can be fast determined.To reveal the high efficiency and high accuracy of SAGB on gradient calculation,the number of flow computations needed is evaluated and compared with three other methods.Through the aerodynamic design optimization of a transonic turbine cascade minimizing total pressure loss at the outlet,the SAGB-based gradients of the base and optimized blades are compared with those obtained by the Monte Carlo-assisted finite difference method.Moreover,the results of both the robust and deterministic aerodynamic design optimizations are presented and compared to demonstrate the practicability of SAGB on improving the aerodynamic robustness of turbomachinery blades.