Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubri...Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements.展开更多
Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was...Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was introduced into aqueous electrolyte to modulate the interfacial electrochemistry of Zn anode.In AZMBs,the positively charged side of Tyr can be well adsorbed on the surface of Zn anode to form a water-poor layer,and the exposed carboxylate side can be easily coordinated with Zn^(2+),favoring inducing uniform plating of Zn^(2+)and inhibiting the occurrence of water-induced side reactions.These in turn enable the achievement of highly stable Zn anode.Accordingly,the Zn anodes achieve outstanding cyclic stability(3000 h at 2 mA cm^(-2),2 mA h cm^(-2)and 1300 h at 5 mA cm^(-2),5 mA h cm^(-2)),high average Coulombic efficiency(99.4%over 3200 cycles),and high depth of discharge(80%for 500 h).Besides,the assembled Zn‖NaV_(3)O_(8)·1.5H_(2)O full cells deliver remarkable capacity retention and ultra-long lifetime(61.8%over 6650 cycles at 5 A g^(-1))and enhanced rate capability(169 mA h g^(-1)at 5 A g^(-1)).The work may promote the design and deep understanding of electrolyte additives with high molecular polarity for high-performance AZMBs.展开更多
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonra...Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses.However,how these groups synergistically affect the enhancement beyond passivation is still unclear.Specifically,isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives.Here,we report two isomeric carbazolyl bisphosphonate additives,2,7-Cz BP and 3,6-Cz BP.The isomerism effect on passivation and charge transport process was studied.The two molecules have similar passivation effects through multiple interactions,e.g.,P=O···Pb,P=O···H–N and N–H···I.2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport.Power conversion efficiencies(PCEs)of 25.88%and 21.04%were achieved for 0.09 cm^(2)devices and 14 cm^(2)modules after 2,7-Cz BP treatment,respectively.The devices exhibited enhanced operational stability maintaining 95%of initial PCE after 1000 h of continuous maximum power point tracking.This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives,which paves the way for innovation of next-generation multifunctional aromatic additives.展开更多
Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,...Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood.Herein,three zwitterions,namely carboxybetaine methacrylate(CBMA),sulfobetaine methacrylate(SBMA),and 2-methacryloyloxyethyl phosphorylcholine(MPC),were selected as additives to investigate their different action mechanisms in AZIBs.All three zwitterions have the same quaternary ammonium as the positively charged group,but having different negatively charged segments,i.e.,carboxylate,sulfonate,and phosphate for CBMA,SBMA,and MPC,respectively.By systematical electrochemical analysis,these zwitterions all contribute to enhanced cycling life of Zn anode,with MPC having the most pronounced effect,which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups.As a result,the Zn//Zn cell with MPC as additive in ZnSO_(4)electrolyte exhibits an ultralong lifespan over 5000 h.This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs.展开更多
The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the...The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the conductive carbon additives(CCAs)inside the composite cathodes.Herein,the well-defined Mo_(3)Ni_(3)N nanosheets embedded onto the N-doped porous carbons(NPCs)substrate are successfully synthesized(Mo-Ni@NPCs)as CCAs inside LiCoO_(2)for Li_(6)PSC_5)Cl(LPSCl)-based ASSLBs.This nano-composite not only makes it difficult for hydroxide groups(-OH)to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS_(2)-Mo_(3)Ni_(3)N heterostructures after the initial cycling stage.These can effectively prevent the occurrence of OH-induced LPSC decomposition reaction from producing harmful insulating sulfates,as well as simultaneously constructing the highly-efficient electrons/ions dual-migration pathways at the cathode interfaces to facilitate the improvement of both electrons and Li+ions conductivities in ASSLBs.With this approach,fine-tuned Mo-Ni@NPCs can deliver extremely outstanding performance,including an ultra-high first discharge-specific capacity of 148.61 mAh g^(-1)(0.1C),a high Coulombic efficiency(94.01%),and a capacity retention rate after 1000 cycles still attain as high as 90.62%.This work provides a brand-new approach of“conversionprotection”strategy to overcome the drawbacks of composite cathodes interfaces instability and further promotes the commercialization of ASSLBs.展开更多
Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,saf...Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.展开更多
Crystallographic engineering of Zn anodes to favor the exposure of(002)planes is an effective approach for improving stability in aqueous electrolytes.However,achieving non-epitaxial electrodeposition with a pronounce...Crystallographic engineering of Zn anodes to favor the exposure of(002)planes is an effective approach for improving stability in aqueous electrolytes.However,achieving non-epitaxial electrodeposition with a pronounced(002)texture and maintaining this orientation during extended cycling remains challenging.This study questions the prevailing notion that a single(002)-textured Zn anode inherently ensures superior stability,showing that such anodes cannot sustain their texture in ZnSO_(4)electrolytes.We then introduced a novel electrolyte additive,benzyltriethylammonium chloride(TEBAC),which preserves the(002)texture over prolonged cycling.Furthermore,we successfully converted commercial Zn foils into highly crystalline(002)-textured Zn without any pretreatment.Experiments and theoretical calculations revealed that the cationic TEBA^(+)selectively adsorbs onto the anode surface,promoting the exposure of the Zn(002)plane and suppressing dendrite formation.A critical discovery was the pitting corrosion caused by chloride ions from TEBAC,which we mitigated by anion substitution.This modification leads to a remarkable lifespan of 375 days for the Zn||Zn symmetric cells at 1 m A cm^(-2)and 1 m Ah cm^(-2).Furthermore,a TEBA^(+)-modified Zn||VO_(2)full cell demonstrates high specific capacity and robust cycle stability at 10.0 Ag^(-1).These results provide valuable insights and strategies for developing long-life Zn ion batteries.展开更多
The textile industry has long relied on various additives to enhance the properties of fabrics,making them more durable,resistant to stains,and even antimicrobial.These additives include dyes,coatings,flame retardants...The textile industry has long relied on various additives to enhance the properties of fabrics,making them more durable,resistant to stains,and even antimicrobial.These additives include dyes,coatings,flame retardants,and water-repellent finishes.While they offer significant functional benefits,they pose a serious challenge when it comes to recycling textiles.Since many of these additives are chemically bonded to fibres,they make the separation and recovery of pure materials incredibly difficult.展开更多
The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrate...The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrated that the polar 2-naphthonitrile(2-CAN)additives help modulate the kinetics of blend morphological evolution during film drying.It is revealed that 2-CAN favorably interacted with acceptor moieties,and the transition from presence to absence of additives triggered the arrangement and aggregation of acceptors,hence yielding the ordered molecular stacks in the bulk heterojunction(BHJ)blends.Optimal blend morphologies with fibril networks were established to improve the excitonic and charge dynamics of active blends,enabling PM6:L8-BO binary OSCs with the promising efficiency of 19.08%(with 2-CAN),which outperformed that of devices with non-polar naphthalene(NA)additives(18.18%)or without additive treatments(17.43%).Meanwhile,non-halogenated 2-CAN exhibited excellent processing features of reproducibility and versatility toward different active blends for fabricating efficient devices.Such 2-CAN-assisted devices with robust transport layers allowed maintaining decent thermal stabilities under continuous 85℃ of thermal annealing.Overall,this work provides an effective strategy on tuning blend morphologies for efficient organic photovoltaics.展开更多
In the quest to develop high-performance lubrication additives,a novel nanocomposite comprising biodiesel soot modified by silver(Ag/BDS)was synthesized.The tribological behavior of Ag/BDS nanocomposite as an additive...In the quest to develop high-performance lubrication additives,a novel nanocomposite comprising biodiesel soot modified by silver(Ag/BDS)was synthesized.The tribological behavior of Ag/BDS nanocomposite as an additive for liquid paraffin(LP)were systematically investigated using response surface methodology.To elucidate the friction and wear mechanisms associated with the Ag/BDS nanocomposite,various analytical techniques were employed,including scanning electron microscopy with energy-dispersive spectroscopy(SEM/EDS),Raman spectroscopy,and molecular dynamics simulations.The results show that the concentration of Ag/BDS has a significant impact on the tribological properties of LP under different applied loads and sliding speeds.Notably,LP containing 0.25%Ag/BDS shows the most favorable tribological performance and in comparison,to pure LP,the average friction coefficient and average wear volume have been reduced by 42.7%and 21.2%,respectively.The mechanisms underlying the reduction in friction and anti-wear mechanism of Ag/BDS have been attributed to the excellent synergies of Ag and BDS.Specifically,the Ag particles facilitate the incorporation of BDS particles in the formation of uniform boundary lubrication films.展开更多
The performance of lithium metal batteries(LMBs)is greatly hampered by the unstable solid electrolyte interphase(SEI)and uncontrollable growth of Li dendrites.To address this question,we developed a weak polar additiv...The performance of lithium metal batteries(LMBs)is greatly hampered by the unstable solid electrolyte interphase(SEI)and uncontrollable growth of Li dendrites.To address this question,we developed a weak polar additive strategy to develop stable and dendrite-free electrolyte for LMBs.In this paper,the effects of additives on the Li^(+)solvation kinetics and the electrode-electrolyte interphases(EEI)formation are discussed.The function of synergistically boosting the superior Li^(+)kinetics and alleviating solvent decomposition on the electrodes is confirmed.From the thermodynamic view,the exothermic process of defluorination reaction for 3,5-difluoropyridine(3,5-DFPy)results in the formation of LiF-rich SEI layer for promoting the uniform Li nucleation and deposition.From the dynamic view,the weakened Li^(+)solvation structure induced by weak polar 3,5-DFPy contributes to better Li^(+)kinetics through the easier Li^(+)desolvation.As expected,Li||Li cell with 1.0 wt%3,5-DFPy exhibits 400 cycles at 1.0 mA cm^(-2)with a deposition capacity of 0.5 mAh cm^(-2),and the Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)batteries delivers the highly reversible capacity after 200 cycles.展开更多
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict betwe...The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation...Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation about the effects of chemical additives and mature compost on H_(2)S emission and compost maturity of kitchen waste composting.The results showed that additives increased the germination index value and H_(2)S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H_(2)S emission reduction(85%).Except for the treatment with only chemical additives,the total sulfur content increased during the kitchen waste composting.The proportion of effective sulfur was higher with the addition of chemical additives,compared with other groups.The relative abundance of H_(2)S-formation bacterial(Desulfovibrio)was reduced and the relative abundance of bacterial(Pseudomonas and Paracoccus),which could convert sulfur-containing substances and H_(2)S to sulfate was improved with additives.In the composting process with both chemical additives and mature compost,the relative abundance of Desulfovibrio was lowest,while the relative abundance of Pseudomonas and Paracoccus was highest.Taken together,the chemical additives and mature compost achieved H_(2)S emission reduction by regulating the dynamics of microbial community.展开更多
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte...Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co...To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。展开更多
Because of their high safety, low cost, and high volumetric specific capacity, zinc-ion batteries(ZIBs) are considered promising next-generation energy storage devices, especially given their high potential for large-...Because of their high safety, low cost, and high volumetric specific capacity, zinc-ion batteries(ZIBs) are considered promising next-generation energy storage devices, especially given their high potential for large-scale energy storage. Despite these advantages, many problems remain for ZIBs—such as Zn dendrite growth, hydrogen evolution, and Zn anode corrosion—which significantly reduce the coulomb efficiency and reversibility of the battery and limit its cycle lifespan, resulting in much uncertainty in terms of its practical applications. Numerous electrolyte additives have been proposed in recent years to solve the aforementioned problems.This review focuses on electrolyte additives and discusses the different substances employed as additives to overcome the problems by altering the Zn~(2+)solvation structure, creating a protective layer at the anode–electrolyte interface, and modulating the Zn~(2+)distribution to be even and Zn deposition to be uniform. On the basis of the review, the possible research strategies, future directions of electrolyte additive development, and the existing problems to be solved are also described.展开更多
Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance o...Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.展开更多
Applying organic waste and inorganic additives during composting can be an effective and easy-to-control strategy for optimizing humification,maturation,and the availability of essential mineral elements in compost.In...Applying organic waste and inorganic additives during composting can be an effective and easy-to-control strategy for optimizing humification,maturation,and the availability of essential mineral elements in compost.In this respect,this study aims to evaluate the effect of organic(olive-mill waste and horse manure)and inorganic(phosphogypsum)additives on the evolution of maturity indices,aromatic compounds,and nutrient availability during composting.Four mixtures[horse manure+green waste(M1),olive-mill+green waste(M2),sewage-sludge+phos-phogypsum+green waste(M3),and green waste(M4)]were carried out.Physicochemical(temperature,pH,phosphorus,nitrogen,and carbon-to-nitrogen(C/N)ratio),infrared-spectroscopic,and phytotoxicity were monitored.The results showed that(in)organic additives have a positive effect on maturity and humification indices,pH stability,and the phosphorus and nitrogen availability in the composts produced.The horse manure additive reduced the carbon and increased the nitrogen,reducing the C/N ratio.Phosphogypsum and olive-mill reduced phytotoxicity,boosting the nitrogen and phosphorus availability of in composts.Fourier transform infrared spectroscopy(FT-IR)analysis revealed that phosphogypsum and olive-mill addition improved the aromatic compounds and reduced the aliphatic ones in M3 and M4 com-posts.These results suggest new approaches to promoting maturity and stability,as well as phosphorus and nitrogen availability in composts,through better use of organic waste and inorganic additives in composting.展开更多
文摘Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements.
基金the financial support from the Foshan Talents Special Foundation(BKBS202003).
文摘Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was introduced into aqueous electrolyte to modulate the interfacial electrochemistry of Zn anode.In AZMBs,the positively charged side of Tyr can be well adsorbed on the surface of Zn anode to form a water-poor layer,and the exposed carboxylate side can be easily coordinated with Zn^(2+),favoring inducing uniform plating of Zn^(2+)and inhibiting the occurrence of water-induced side reactions.These in turn enable the achievement of highly stable Zn anode.Accordingly,the Zn anodes achieve outstanding cyclic stability(3000 h at 2 mA cm^(-2),2 mA h cm^(-2)and 1300 h at 5 mA cm^(-2),5 mA h cm^(-2)),high average Coulombic efficiency(99.4%over 3200 cycles),and high depth of discharge(80%for 500 h).Besides,the assembled Zn‖NaV_(3)O_(8)·1.5H_(2)O full cells deliver remarkable capacity retention and ultra-long lifetime(61.8%over 6650 cycles at 5 A g^(-1))and enhanced rate capability(169 mA h g^(-1)at 5 A g^(-1)).The work may promote the design and deep understanding of electrolyte additives with high molecular polarity for high-performance AZMBs.
基金financially supported by the National Science Foundation of China(62474142)Natural Science Foundation of Shandong Province(No.ZR2024YQ070)。
文摘Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells.The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses.However,how these groups synergistically affect the enhancement beyond passivation is still unclear.Specifically,isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives.Here,we report two isomeric carbazolyl bisphosphonate additives,2,7-Cz BP and 3,6-Cz BP.The isomerism effect on passivation and charge transport process was studied.The two molecules have similar passivation effects through multiple interactions,e.g.,P=O···Pb,P=O···H–N and N–H···I.2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport.Power conversion efficiencies(PCEs)of 25.88%and 21.04%were achieved for 0.09 cm^(2)devices and 14 cm^(2)modules after 2,7-Cz BP treatment,respectively.The devices exhibited enhanced operational stability maintaining 95%of initial PCE after 1000 h of continuous maximum power point tracking.This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives,which paves the way for innovation of next-generation multifunctional aromatic additives.
基金supported by the Australian Research Council(LP220100036)the National Key Research and Development Program(2022YFB2502104 and 2022YFA1602700)+3 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332)the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund(BE2022605)the Australian Research Council for his Discovery Early Career Researcher Award fellowship(DE230101105)the China Scholarship Council(CSC,grant no.202306190185)for funding a scholarship。
文摘Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood.Herein,three zwitterions,namely carboxybetaine methacrylate(CBMA),sulfobetaine methacrylate(SBMA),and 2-methacryloyloxyethyl phosphorylcholine(MPC),were selected as additives to investigate their different action mechanisms in AZIBs.All three zwitterions have the same quaternary ammonium as the positively charged group,but having different negatively charged segments,i.e.,carboxylate,sulfonate,and phosphate for CBMA,SBMA,and MPC,respectively.By systematical electrochemical analysis,these zwitterions all contribute to enhanced cycling life of Zn anode,with MPC having the most pronounced effect,which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups.As a result,the Zn//Zn cell with MPC as additive in ZnSO_(4)electrolyte exhibits an ultralong lifespan over 5000 h.This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs.
基金support provided by the National Natural Science Foundation of China(Grant No.21804008,52102209)the International Technological Collaboration Project of Shanghai(Grant No.17520710300).
文摘The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the conductive carbon additives(CCAs)inside the composite cathodes.Herein,the well-defined Mo_(3)Ni_(3)N nanosheets embedded onto the N-doped porous carbons(NPCs)substrate are successfully synthesized(Mo-Ni@NPCs)as CCAs inside LiCoO_(2)for Li_(6)PSC_5)Cl(LPSCl)-based ASSLBs.This nano-composite not only makes it difficult for hydroxide groups(-OH)to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS_(2)-Mo_(3)Ni_(3)N heterostructures after the initial cycling stage.These can effectively prevent the occurrence of OH-induced LPSC decomposition reaction from producing harmful insulating sulfates,as well as simultaneously constructing the highly-efficient electrons/ions dual-migration pathways at the cathode interfaces to facilitate the improvement of both electrons and Li+ions conductivities in ASSLBs.With this approach,fine-tuned Mo-Ni@NPCs can deliver extremely outstanding performance,including an ultra-high first discharge-specific capacity of 148.61 mAh g^(-1)(0.1C),a high Coulombic efficiency(94.01%),and a capacity retention rate after 1000 cycles still attain as high as 90.62%.This work provides a brand-new approach of“conversionprotection”strategy to overcome the drawbacks of composite cathodes interfaces instability and further promotes the commercialization of ASSLBs.
基金supported by Yunnan Natural Science Foundation Project(No.202202AG050003)Yunnan Fundamental Research Projects(Nos.202101BE070001-018 and 202201AT070070)+1 种基金the National Youth Talent Support Program of Yunnan Province China(No.YNQR-QNRC-2020-011)Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(No.2023-XMDJ-00617107)。
文摘Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.
基金supported by the National Natural Science Foundation of China(Grant No.52432007 and 52422212)。
文摘Crystallographic engineering of Zn anodes to favor the exposure of(002)planes is an effective approach for improving stability in aqueous electrolytes.However,achieving non-epitaxial electrodeposition with a pronounced(002)texture and maintaining this orientation during extended cycling remains challenging.This study questions the prevailing notion that a single(002)-textured Zn anode inherently ensures superior stability,showing that such anodes cannot sustain their texture in ZnSO_(4)electrolytes.We then introduced a novel electrolyte additive,benzyltriethylammonium chloride(TEBAC),which preserves the(002)texture over prolonged cycling.Furthermore,we successfully converted commercial Zn foils into highly crystalline(002)-textured Zn without any pretreatment.Experiments and theoretical calculations revealed that the cationic TEBA^(+)selectively adsorbs onto the anode surface,promoting the exposure of the Zn(002)plane and suppressing dendrite formation.A critical discovery was the pitting corrosion caused by chloride ions from TEBAC,which we mitigated by anion substitution.This modification leads to a remarkable lifespan of 375 days for the Zn||Zn symmetric cells at 1 m A cm^(-2)and 1 m Ah cm^(-2).Furthermore,a TEBA^(+)-modified Zn||VO_(2)full cell demonstrates high specific capacity and robust cycle stability at 10.0 Ag^(-1).These results provide valuable insights and strategies for developing long-life Zn ion batteries.
文摘The textile industry has long relied on various additives to enhance the properties of fabrics,making them more durable,resistant to stains,and even antimicrobial.These additives include dyes,coatings,flame retardants,and water-repellent finishes.While they offer significant functional benefits,they pose a serious challenge when it comes to recycling textiles.Since many of these additives are chemically bonded to fibres,they make the separation and recovery of pure materials incredibly difficult.
基金funded by the National Natural Science Foundation of China(No.22125901)the National Key Research and Development Program of China(No.2019YFA0705900)+1 种基金the Fundamental Research Funds for the Central Universities(226-2024-00005)the Scientific Research Project of China Three Gorges Corporation(202303014)。
文摘The fine control of active blend morphologies is crucial to achieve efficient and stable organic solar cells(OSCs).Herein,by introducing structurally simple,non-halogenated volatile solid additives,we have demonstrated that the polar 2-naphthonitrile(2-CAN)additives help modulate the kinetics of blend morphological evolution during film drying.It is revealed that 2-CAN favorably interacted with acceptor moieties,and the transition from presence to absence of additives triggered the arrangement and aggregation of acceptors,hence yielding the ordered molecular stacks in the bulk heterojunction(BHJ)blends.Optimal blend morphologies with fibril networks were established to improve the excitonic and charge dynamics of active blends,enabling PM6:L8-BO binary OSCs with the promising efficiency of 19.08%(with 2-CAN),which outperformed that of devices with non-polar naphthalene(NA)additives(18.18%)or without additive treatments(17.43%).Meanwhile,non-halogenated 2-CAN exhibited excellent processing features of reproducibility and versatility toward different active blends for fabricating efficient devices.Such 2-CAN-assisted devices with robust transport layers allowed maintaining decent thermal stabilities under continuous 85℃ of thermal annealing.Overall,this work provides an effective strategy on tuning blend morphologies for efficient organic photovoltaics.
基金funded by the National Natural Science Foundation of China(52075141)the Open Project of Anhui Province Key Laboratory of Critical Friction Pair for Advanced Equipment(LCFP-2408)+9 种基金Key Research&Development(R&D)Plan of Anhui Province under Grant(2022a05020019)Support Program for Outstanding Young Talents in Anhui Province Colleges and Universities(gxyq2022079)Excellent Research and Innovation Teams Project of Anhui Province's Universities(2022AH010092)Discipline Construction Quality Improvement Project of Chaohu University(kj22fdzy03,XLZ202307,XLZ202301)School-level Scientific Research Project of Chaohu University(XLY-202112)Scientific Research Planning Project of Anhui Provincial(2022AH051726)Anhui Province University Science and Engineering Teachers'Internship Program in Enterprises(2024jsqygz89)Anhui Province College Students'Innovation and Entrepreneurship Training Program(S202410380020)Anhui Province Postdoctoral Research Project(2024A773)Horizontal Research Project of Chaohu University(hxkt20230006).
文摘In the quest to develop high-performance lubrication additives,a novel nanocomposite comprising biodiesel soot modified by silver(Ag/BDS)was synthesized.The tribological behavior of Ag/BDS nanocomposite as an additive for liquid paraffin(LP)were systematically investigated using response surface methodology.To elucidate the friction and wear mechanisms associated with the Ag/BDS nanocomposite,various analytical techniques were employed,including scanning electron microscopy with energy-dispersive spectroscopy(SEM/EDS),Raman spectroscopy,and molecular dynamics simulations.The results show that the concentration of Ag/BDS has a significant impact on the tribological properties of LP under different applied loads and sliding speeds.Notably,LP containing 0.25%Ag/BDS shows the most favorable tribological performance and in comparison,to pure LP,the average friction coefficient and average wear volume have been reduced by 42.7%and 21.2%,respectively.The mechanisms underlying the reduction in friction and anti-wear mechanism of Ag/BDS have been attributed to the excellent synergies of Ag and BDS.Specifically,the Ag particles facilitate the incorporation of BDS particles in the formation of uniform boundary lubrication films.
基金supported by the National Natural Science Foundation of China(U21A20311)Researchers Supporting Project Number(RSP2025R304),King Saud University,Riyadh,Saudi Arabia。
文摘The performance of lithium metal batteries(LMBs)is greatly hampered by the unstable solid electrolyte interphase(SEI)and uncontrollable growth of Li dendrites.To address this question,we developed a weak polar additive strategy to develop stable and dendrite-free electrolyte for LMBs.In this paper,the effects of additives on the Li^(+)solvation kinetics and the electrode-electrolyte interphases(EEI)formation are discussed.The function of synergistically boosting the superior Li^(+)kinetics and alleviating solvent decomposition on the electrodes is confirmed.From the thermodynamic view,the exothermic process of defluorination reaction for 3,5-difluoropyridine(3,5-DFPy)results in the formation of LiF-rich SEI layer for promoting the uniform Li nucleation and deposition.From the dynamic view,the weakened Li^(+)solvation structure induced by weak polar 3,5-DFPy contributes to better Li^(+)kinetics through the easier Li^(+)desolvation.As expected,Li||Li cell with 1.0 wt%3,5-DFPy exhibits 400 cycles at 1.0 mA cm^(-2)with a deposition capacity of 0.5 mAh cm^(-2),and the Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)batteries delivers the highly reversible capacity after 200 cycles.
文摘The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金supported by the National Natural Science Foundation of China(Nos.32071552,42007031,31960013,and 31800378)the Open Research Fund from the Key Laboratory of Forest Ecology in Tibet Plateau(Tibet Agriculture&Animal Husbandry University),Ministry of Education,China(No.XZAJYBSYS-2020-02)+2 种基金the Independent Research Project of Science and Technology Innovation Base in Tibet Autonomous Region(No.XZ2022JR0007G)Suzhou Science and Technology Plan Project(No.SS20200)Ministry of Urban-Rural Development and Housing Technology Demonstration Project(No.S20220395)。
文摘Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation about the effects of chemical additives and mature compost on H_(2)S emission and compost maturity of kitchen waste composting.The results showed that additives increased the germination index value and H_(2)S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H_(2)S emission reduction(85%).Except for the treatment with only chemical additives,the total sulfur content increased during the kitchen waste composting.The proportion of effective sulfur was higher with the addition of chemical additives,compared with other groups.The relative abundance of H_(2)S-formation bacterial(Desulfovibrio)was reduced and the relative abundance of bacterial(Pseudomonas and Paracoccus),which could convert sulfur-containing substances and H_(2)S to sulfate was improved with additives.In the composting process with both chemical additives and mature compost,the relative abundance of Desulfovibrio was lowest,while the relative abundance of Pseudomonas and Paracoccus was highest.Taken together,the chemical additives and mature compost achieved H_(2)S emission reduction by regulating the dynamics of microbial community.
基金Funded by the National Natural Science Foundation of China (No. 51905506)。
文摘Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.
基金the Beijing Natural Science Foundation(Grant No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。
文摘Because of their high safety, low cost, and high volumetric specific capacity, zinc-ion batteries(ZIBs) are considered promising next-generation energy storage devices, especially given their high potential for large-scale energy storage. Despite these advantages, many problems remain for ZIBs—such as Zn dendrite growth, hydrogen evolution, and Zn anode corrosion—which significantly reduce the coulomb efficiency and reversibility of the battery and limit its cycle lifespan, resulting in much uncertainty in terms of its practical applications. Numerous electrolyte additives have been proposed in recent years to solve the aforementioned problems.This review focuses on electrolyte additives and discusses the different substances employed as additives to overcome the problems by altering the Zn~(2+)solvation structure, creating a protective layer at the anode–electrolyte interface, and modulating the Zn~(2+)distribution to be even and Zn deposition to be uniform. On the basis of the review, the possible research strategies, future directions of electrolyte additive development, and the existing problems to be solved are also described.
基金supported by the Natural Science Foundation of China(No.22179062,52125202,22171136,and U2004209)financial support by the Fundamental Research Funds for the Central Universities(No.30922010303)the financial support by the Natural Science Foundation of Jiangsu Province(BK20220079).
文摘Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.
文摘Applying organic waste and inorganic additives during composting can be an effective and easy-to-control strategy for optimizing humification,maturation,and the availability of essential mineral elements in compost.In this respect,this study aims to evaluate the effect of organic(olive-mill waste and horse manure)and inorganic(phosphogypsum)additives on the evolution of maturity indices,aromatic compounds,and nutrient availability during composting.Four mixtures[horse manure+green waste(M1),olive-mill+green waste(M2),sewage-sludge+phos-phogypsum+green waste(M3),and green waste(M4)]were carried out.Physicochemical(temperature,pH,phosphorus,nitrogen,and carbon-to-nitrogen(C/N)ratio),infrared-spectroscopic,and phytotoxicity were monitored.The results showed that(in)organic additives have a positive effect on maturity and humification indices,pH stability,and the phosphorus and nitrogen availability in the composts produced.The horse manure additive reduced the carbon and increased the nitrogen,reducing the C/N ratio.Phosphogypsum and olive-mill reduced phytotoxicity,boosting the nitrogen and phosphorus availability of in composts.Fourier transform infrared spectroscopy(FT-IR)analysis revealed that phosphogypsum and olive-mill addition improved the aromatic compounds and reduced the aliphatic ones in M3 and M4 com-posts.These results suggest new approaches to promoting maturity and stability,as well as phosphorus and nitrogen availability in composts,through better use of organic waste and inorganic additives in composting.