期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Additive Problem with Primes in Arithmetic Progressions
1
作者 ZhenFengZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期155-168,共14页
In this paper, we extend a classical result of Hua to arithmetic progressionswith large moduli. The result implies the Linnik Theorem on the least prime in an arithmeticprogression.
关键词 additive problem PRIME Arithmetic progression Circle method
原文传递
SUFFICIENT CONDITIONS FOR THE SOLUBILITY OF ADDITIVE INVERSE EIGENVALUE PROBLEMS
2
作者 Zhang Yuhai(Dept.of Math.,Shandong University,Jinan 250100 ,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期74-77,共4页
1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n co... 1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix 展开更多
关键词 REAL SUFFICIENT CONDITIONS FOR THE SOLUBILITY OF additive INVERSE EIGENVALUE problemS
在线阅读 下载PDF
Some Results Concerning a Singular Intergal
3
作者 QIAOJian-wei LINGFeng-cai ZHANGZhen-feng 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第2期213-217,共5页
In this note, we present some detail estimates for the integral with general integer k, as well as a singular integral formed from it, which would be useful for some nonlinear additive problems of primes.
关键词 singular integral additive prime problem
在线阅读 下载PDF
Diophantine inequalities over Piatetski-Shapiro primes
4
作者 Jing HUANG Wenguang ZHAI Deyu ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第3期749-770,共22页
Let c>1 and 0<γ<1.We study the solubility of the Diophantine inequality∣p^(c)_(1)+p^(c)_(2)+…+p^(c)_(s)−N∣<(log N)^(−1) in Piatetski-Shapiro primes p_(1),p_(2),…,p_(s) of the form pj=[m^(1/γ)]for som... Let c>1 and 0<γ<1.We study the solubility of the Diophantine inequality∣p^(c)_(1)+p^(c)_(2)+…+p^(c)_(s)−N∣<(log N)^(−1) in Piatetski-Shapiro primes p_(1),p_(2),…,p_(s) of the form pj=[m^(1/γ)]for some m∈ℕ,and improve the previous results in the cases s=2,3,4. 展开更多
关键词 Diophantine inequalities Piatetski-Shapiro primes exponential sums additive problems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部