期刊文献+
共找到817篇文章
< 1 2 41 >
每页显示 20 50 100
Advancements in AI-Enabled Design and Process Optimization for Additive Manufacturing
1
作者 Lingling Wu Shangqin Yuan 《Additive Manufacturing Frontiers》 2025年第2期1-2,共2页
Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue feat... Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties. 展开更多
关键词 additive manufacturing industry applications additive manufacturing am design optimization AEROSPACE high performance materials AI driven methods complex structures
在线阅读 下载PDF
A Review of Strategies for In Situ Mitigating of Residual Stress in Laser‑Based Metal Additive Manufacturing: Insights, Innovations, and Challenges
2
作者 Ali Kazemi Movahed Reza Ghanavati +1 位作者 Abdollah Saboori Luca Iuliano 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1657-1698,共42页
Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)t... Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)technologies use high-power lasers to melt metallic materials,which then solidify to form parts.However,it inherently induces self-equilibrating residual stress during fabrication due to thermal loads and plastic deformation.These residual stresses can cause defects such as delamination,cracking,and distortion,as well as premature failure under service conditions,necessitating mitigation.While post-treatment methods can reduce residual stresses,they are often costly and time-consuming.Therefore,tuning the fabrication process parameters presents a more feasible approach.Accordingly,in addition to providing a comprehensive view of residual stress by their classification,formation mechanisms,measurement methods,and common post-treatment,this paper reviews and compares the studies conducted on the effect of key parameters of the LAM process on the resulting residual stresses.This review focuses on proactively adjusting LAM process parameters as a strategic approach to mitigate residual stress formation.It provides a result of the various parameters influencing residual stress outcomes,such as laser power,scanning speed,beam diameter,hatch spacing,and scanning strategies.Finally,the paper identifies existing research gaps and proposes future studies needed to deepen understanding of the relationship between process parameters and residual stress mitigation in LAM. 展开更多
关键词 additive manufacturing Residual stress Formation mechanisms Measurement methods Heat treatment Laser-based additive manufacturing(LAM)process parameters
原文传递
Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling 被引量:1
3
作者 Yangyang Sun Haibin Liu +2 位作者 Ruishan Xie Ying Chen Shujun Chen 《Journal of Materials Science & Technology》 2025年第2期168-181,共14页
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency... Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect. 展开更多
关键词 Friction rolling additive manufacturing Al-Li alloy Plasma preheating Instant cooling Heat accumulation Microstructure
原文传递
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
4
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
5
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS additive manufacturing
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
6
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
7
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy additive manufacturing of composite laminates
原文传递
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components
8
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
9
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
在线阅读 下载PDF
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
10
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
Review on Characteristic and Mechanical Behaviour of FGMs Prepared by Additive Manufacturing
11
作者 Sainath Krishna Mani Iyer Prabagaran Subramaniam 《稀有金属材料与工程》 北大核心 2025年第6期1478-1488,共11页
The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manuf... The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems. 展开更多
关键词 additive manufacturing functionally graded material manufacturing process mechanical behaviour CHARACTERISTIC
原文传递
Application of Multi-Criteria Decision and Simulation Approaches to Selection of Additive Manufacturing Technology for Aerospace Application
12
作者 Ilesanmi Afolabi Daniyan Rumbidzai Muvunzi +3 位作者 Festus Fameso Julius Ndambuki Williams Kupolati Jacques Snyman 《Computers, Materials & Continua》 2025年第5期1623-1648,共26页
This study evaluates the Fuzzy Analytical Hierarchy Process(FAHP)as a multi-criteria decision(MCD)support tool for selecting appropriate additive manufacturing(AM)techniques that align with cleaner production and envi... This study evaluates the Fuzzy Analytical Hierarchy Process(FAHP)as a multi-criteria decision(MCD)support tool for selecting appropriate additive manufacturing(AM)techniques that align with cleaner production and environmental sustainability.The FAHP model was validated using an example of the production of aircraft components(specifically fuselage)employing AM technologies such as Wire Arc Additive Manufacturing(WAAM),laser powder bed fusion(L-PBF),Binder Jetting(BJ),Selective Laser Sintering(SLS),and Laser Metal Deposition(LMD).The selection criteria prioritized eco-friendly manufacturing considerations,including the quality and properties of the final product(e.g.,surface finish,high strength,and corrosion resistance),service and functional requirements,weight reduction for improved energy efficiency(lightweight structures),and environmental responsibility.Sustainability metrics,such as cost-effectiveness,material efficiency,waste minimization,and environmental impact,are central to the evaluation process.A computer-aided modeling approach was also used to simulate the performance of aluminum(AA7075 T6),steel(304),and titanium alloy(Ti6Al4V)for fuselage development.The results demonstrate that MCD approaches such as FAHP can effectively guide the selection of AM technologies that meet functional and technical requirements while minimizing environmental degradation footprints.Furthermore,the aluminumalloy outperformed the other materials investigated in the simulation with the lowest stress concentration and least deformation.This study contributes to advancing cleaner production practices by providing a decision-making framework for sustainable and eco-friendly manufacturing,enabling manufacturers to adopt AM technologies that promote environmental responsibility and sustainable development,while maintaining product quality and performance. 展开更多
关键词 additive manufacturing(AM) cleaner production computer-aided modelling and simulation environmental responsibility MCD SUSTAINABILITY
在线阅读 下载PDF
Sustainable large-format additive manufacturing of composite molds with 45-degree deposition strategies
13
作者 Pablo Castelló-Pedrero Javier Bas-Bolufer +2 位作者 César García-Gascón Juan Antonio García-Manrique Francisco Chinesta 《Defence Technology(防务技术)》 2025年第9期303-317,共15页
Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generato... Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments. 展开更多
关键词 Large format additive manufacturing Recycled material Composite materials Glass fiber MOLDS DRONES Wind turbine Racing car
在线阅读 下载PDF
Design and Additive Manufacturing of Metamaterial-Enabling Structure-Driven Material Properties
14
作者 Ling Wang Bo Song 《Additive Manufacturing Frontiers》 2025年第1期1-2,共2页
Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative techn... Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering. 展开更多
关键词 METAMATERIALS structure driven additive manufacturing biomedical engineering material properties metamaterials engineered materials ENGINEERING
在线阅读 下载PDF
Additive manufacturing-by-design for support structures:a critical review
15
作者 Jinlong Su Yang Mo +3 位作者 Peijie Shangguan Chinnapat Panwisawas Fulin Jiang Swee Leong Sing 《International Journal of Extreme Manufacturing》 2025年第5期52-80,共29页
Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in ... Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM. 展开更多
关键词 additive manufacturing support structure design and optimisation SIMULATION SUSTAINABILITY 3D printing
在线阅读 下载PDF
High-throughput additive manufacturing and characterization of CoCrFeNi-AlTi high-entropy alloys
16
作者 Xiu-Xiu Lv Wen-Tao Liu +7 位作者 Jia-Qi Li Lian-Zhou Li Cai-Xia Wang Hua Zhang Xin Zhou Liang Jiang Jing-Jing Ruan Li-Long Zhu 《Rare Metals》 2025年第3期1943-1957,共15页
Co-precipitation strengthening of the L1_(2)nano-particles along with hard intermetallic phases,including L2_(1),B2,σandη,demonstrates significant potential for the development of advanced CoCrFeNi high-entropy allo... Co-precipitation strengthening of the L1_(2)nano-particles along with hard intermetallic phases,including L2_(1),B2,σandη,demonstrates significant potential for the development of advanced CoCrFeNi high-entropy alloys(HEAs)with favorable strength-ductility balances.Understanding the alloying effect of Al and Ti on the formation and stability of these intermetallic phases in the CoCrFeNi HEAs is crucial for efficiently exploring the multi-component space for future alloy designs.In the present work,stepwise compositionally graded CoCrFeNi-AlTi HEAs comprising 35 different compositions were fabricated using high-throughput additive manufacturing(AM)and analyzed through a suite of localized characterization techniques.Our analysis confirmed the existence of two primary solid solution phases,face-centered cubic(FCC)and body-centered cubic(BCC),as well as four distinct intermetallic phases,which include L1_(2),L2_(1),σandη.By overlapping the zero phase fraction(ZPF)lines of these phases,the pseudo-ternary phase diagram of the multi-component CoCrFeNi-AlTi system at 800℃was determined,demonstrating good agreement with the literature results.Furthermore,the composition-dependent microstructural evolution and Vickers hardness(HV)were also established,providing numerous opportunities to design CoCrFeNi-AlTi HEAs with superior microstructure stability and balanced strength-ductility properties for structural applications at elevated temperatures. 展开更多
关键词 High-entropy alloys additive manufacturing Multi-component phase equilibria MICROSTRUCTURE Precipitation strengthening Vickers hardness
原文传递
Improving mechanical properties of extrusion additive manufacturing WC-9Co cemented carbide via green warm isostatic pressing
17
作者 Cai CHEN Run-xing ZHOU +4 位作者 Zu-ming LIU Yong-xia LI Dan ZOU Yi-ming CHANG Xu-lin CHENG 《Transactions of Nonferrous Metals Society of China》 2025年第3期902-920,共19页
To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,t... To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides. 展开更多
关键词 material extrusion additive manufacturing WC-Co cemented carbide warm isostatic pressing DEFECT microstructure mechanical properties
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
18
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
Additive Manufacturing Modification by Artificial Intelligence,Machine Learning,and Deep Learning:A Review
19
作者 Mohsen Soori Fooad Karimi Ghaleh Jough +1 位作者 Roza Dastres Behrooz Arezoo 《Additive Manufacturing Frontiers》 2025年第2期3-19,共17页
The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM proces... The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM processes remain challenging owing to the intricacies involved in design,material selection,and process parameters.This review explores the integration of artificial intelligence(AI),machine learning(ML),and deep learning(DL)techniques to improve and innovate in the field of AM.AI-driven design optimization procedures offer innovative solutions for the 3D printing of complex geometries and lightweight structures.By leveraging machine learning(ML)algorithms,these procedures analyze extensive data from previous manufacturing processes to enhance efficiency and productivity.ML models facilitate design and production automation by learning from historical data and identifying intricate patterns that human operators may miss.Deep learning(DL)further augments this capacity by utilizing sophisticated neural networks to manage and interpret complex information and provide deeper insights into the manufacturing process.Integrating AI,ML,and DL into AM enables the creation of optimized,lightweight components that are crucial for reducing fuel consumption in the automotive and aviation industries.These advanced AI techniques optimize the design and production processes and enhance predictive modeling for process optimization and defect detection,leading to improved performance and reduced manufacturing costs.Therefore,integrating AI,ML,and DL into AM improves precision in component fabrication,enabling advanced material design innovations and opening new possibilities for innovation in product design and material science.This review discusses and highlights significant advancements and identifies future directions for applying AI,ML,and DL in AM.By leveraging these technologies,AM processes can achieve unprecedented levels of precision,customization,and productivity for analysis and modification. 展开更多
关键词 additive manufacturing OPTIMIZATION Artificial intelligence Machine learning Deep learning
在线阅读 下载PDF
Additive Manufacturing for Nanogenerators:Fundamental Mechanisms,Recent Advancements,and Future Prospects
20
作者 Zhiyu Tian Gary Chi-Pong Tsui +3 位作者 Yuk-Ming Tang Chi-Ho Wong Chak-Yin Tang Chi-Chiu Ko 《Nano-Micro Letters》 2026年第1期782-826,共45页
Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Th... Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Things.In this review,an in-depth analysis of AM for piezoelectric and triboelectric nanogenerators is presented from the perspectives of fundamental mechanisms,recent advancements,and future prospects.It highlights AM-enabled advantages of versatility across materials,structural topology optimization,microstructure design,and integrated printing,which enhance critical performance indicators of nanogenerators,such as surface charge density and piezoelectric constant,thereby improving device performance compared to conventional fabrication.Common AM techniques for nanogenerators,including fused deposition modeling,direct ink writing,stereolithography,and digital light processing,are systematically examined in terms of their working principles,improved metrics(output voltage/current,power density),theoretical explanation,and application scopes.Hierarchical relationships connecting AM technologies with performance optimization and applications of nanogenerators are elucidated,providing a solid foundation for advancements in energy harvesting,self-powered sensors,wearable devices,and human-machine interaction.Furthermore,the challenges related to fabrication quality,cross-scale manufacturing,processing efficiency,and industrial deployment are critically discussed.Finally,the future prospects of AM for nanogenerators are explored,aiming to foster continuous progress and innovation in this field. 展开更多
关键词 additive manufacturing NANOGENERATORS Output performance Energy harvesting Self-powered sensors
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部