In this paper, we introduce the concepts of additive generators and additive generator pair of <em>n</em>-dimensional overlap functions, in order to extend the dimensionality of overlap functions from 2 to...In this paper, we introduce the concepts of additive generators and additive generator pair of <em>n</em>-dimensional overlap functions, in order to extend the dimensionality of overlap functions from 2 to <em>n</em>. We mainly discuss the conditions under which an <em>n</em>-dimensional overlap function can be expressed in terms of its generator pair.展开更多
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen...The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.展开更多
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam...The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.展开更多
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege...This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of ...A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.展开更多
Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on ri...Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation.展开更多
There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution i...There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution in the Yellow River Delta,641 vegetation samples and 964 soil samples were collected in the area in October of 2004,2005,2006 and 2007.The contents of soil organic matter,total phosphorus,salt,and soluble potassium were determined.Then,the analyzed data were interpolated into spatial raster data by Kriging interpolation method.Meanwhile,the digital elevation model,soil type map and landform unit map of the Yellow River Delta were also collected.Generalized Additive Models(GAMs) were employed to build species-environment model and then simulate the potential distribution of T.chinensis.The results indicated that the distribution of T.chinensis was mainly limited by soil salt content,total soil phosphorus content,soluble potassium content,soil type,landform unit,and elevation.The distribution probability of T.chinensis was produced with a lookup table generated by Grasp Module(based on GAMs) in software ArcView GIS 3.2.The AUC(Area Under Curve) value of validation and cross-validation of ROC(Receive Operating Characteristic) were both higher than 0.8,which suggested that the established model had a high precision for predicting species distribution.展开更多
In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes...In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis.展开更多
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual...Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively.展开更多
To investigate the response of Roadside Monitoring Stations(RSs)to traffic-related air pollution,traffic and pollutant characteristics,influencing factors,and potential source characterization in Tianjin,China were de...To investigate the response of Roadside Monitoring Stations(RSs)to traffic-related air pollution,traffic and pollutant characteristics,influencing factors,and potential source characterization in Tianjin,China were determined based on roadside monitoring of real-world data conducted at RSs in 2022.The diurnal variation trend of pollutants at RSs was consistent with that at the National Monitoring Station(NM),with notably higher pollutant fluctuations during the morning and evening peak traffic times at RSs,where the average diurnal concentration was 41.46%higher than that at the NM.The generalized additive model(GAM)for nitrogen oxides(NO_(x))and carbon monoxide(CO),responding to themultiple influencing factors,performed well at RSs,with deviance explained by 86.6%and 61.4%,respectively.The synergistic effects of wind direction and speed contributed to most of the variations in NO_(x) and CO,which were 14.74%and 12.87%,respectively.Pollutant concentrations were highest under windless conditions,with pollutants originating primarily from local vehicle emissions.The model results indicated that medium-duty truck(MDT)traffic flow predominantly contributed to the variability in NO_(x) emissions,whereas passenger car(PC)traffic flow was the primary source of CO emissions from traffic variables.MDTs should be the focus of urban NO_(x) traffic emissions control.Potential-source analysis validated the results obtained from the GAM,and both analyses showed that RSs can better characterize traffic-related air pollutants.Furthermore,more stringent emission standards have effectively mitigated the release of pollutants from motor vehicles and contributed to the modernization of vehicle fleet composition,effectively decreasing CO concentrations.展开更多
Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) ...Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest.展开更多
Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Auton...Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.展开更多
The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll c...The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll concentration (Chl-α) and sea surface height (SSH) from NASA, as well as the yields of neon flying squid in the North Pacific Ocean. The results show that the favorable temperature for neon flying squid living is 10℃-22℃ and the favorite temperature is between 15℃-17℃. The Chl-α concentration is 0.1-0.6 mg/m^3. When Chl-α concentration changes to 0.12-0.14 mg/m^3, the probability of forming fishing ground becomes very high. In most fishing grounds, the SSH is higher than the mean SSH. The generalized additive model (GAM) was applied to analyze the correlations between neon flying squid and ocean environmental factors. Every year, squids migrate northward from June to August and return southward during October-November, and the characteristics of the both migrations are very different. When squids migrate to the north, most relationships between the yields and SST are positive. The relationships are negative when squids move to southward. The relationships between the yields and Chl-a concentrations are negative from June to October, and insignificant in November. There is no obvious correlation between the catches of squid and longitude, but good with latitude.展开更多
China is one of the countries where landslides caused the most fatalities in the last decades. The threat that landslide disasters pose to people might even be greater in the future, due to climate change and the incr...China is one of the countries where landslides caused the most fatalities in the last decades. The threat that landslide disasters pose to people might even be greater in the future, due to climate change and the increasing urbanization of mountainous areas. A reliable national-scale rainfall induced landslide susceptibility model is therefore of great relevance in order to identify regions more and less prone to landsliding as well as to develop suitable risk mitigating strategies. However, relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area. The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China. In this context, it is aimed to explore the benefit of mixed effects modelling to counterbalance associated bias propagations. Six influencing factors including lithology, slope,soil moisture index, mean annual precipitation, land use and geological environment regions were selected based on an initial exploratory data analysis. Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information: Set 1(disregards the presence of incomplete landslide information), Set 2(excludes factors related to the incompleteness of landslide data), Set 3(accounts for factors related to the incompleteness via random effects). The variable sets were then introduced in a generalized additive model(GAM: Set 1 and Set 2) and a generalized additive mixed effect model(GAMM: Set 3) to establish three national-scale statistical landslide susceptibility models: models 1, 2 and 3. The models were evaluated using the area under the receiver operating characteristics curve(AUROC) given by spatially explicit and non-spatial cross-validation. The spatial prediction pattern produced by the models were also investigated. The results show that the landslide inventory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models. The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However, although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9), it was not associated with the most plausible representation of landslide susceptibility. The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias. The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility. However, a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g., the Kuenlun Mountains in the northern Tibetan Plateau). The non-linear mixed-effects model(Model 3) reduced the impact of these biases best by introducing bias-describing variables as random effects. Among the three models, Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive performance(median AUROC of spatial cross validation 0.84) compared to the other two models(median AUROCs of 0.81 and 0.79, respectively). We conclude that ignoring landslide inventory-based incompleteness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas.展开更多
Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacifi...Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.展开更多
Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abu...Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.展开更多
Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and...Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and the relationships among 11 diversity indices were explored.Generalized additive models were constructed to examine the environmental effects on diversity indices.Eleven diversity indices were grouped into four components:(1) species numbers and richness,(2) heterogeneous indices,(3) evenness,and(4) taxonomic relatedness.The results show that diversity indices among different components are complementary.Spatial patterns show that fish diversity was higher in coastal areas,which was affected by complex bottom topography and spatial variations of water mass and currents.Seasonal trends could be best explained by the seasonal migration of dominant fish species.Fish diversity generally declined with increasing depth except for taxonomic distinctness,which increased with latitude.In addition,bottom temperature had a significant effect on diversity index of richness.These results indicate that substrate complexity and environmental gradients had important influences on fish diversity patterns,and these factors should be considered in fishery resource management and conservation.Furthermore,diversity in two functional groups(demersal/pelagic fishes) was influenced by different environmental factors.Therefore,the distribution of individual species or new indicators in diversity should be applied to examine spatio-seasonal variations in fish diversity.展开更多
Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to fir...Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha?1. Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6 m of the lower stem of dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.展开更多
Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of dat...Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of data regarding penile and testicular size measurements for Chinese boys at all stages of childhood and puberty. This cross-sectional study aimed to develop appropriate growth curves and charts for male external genitalia among children and adolescents aged 0-17 years in Chongqing, China. A total of 2974 boys were enrolled in the present study. Penile length was measured using a rigid ruler, penile diameter was measured using a pachymeter, and testicular volume was determined using a Prader orchidometer. Age-specific percentile curves for penile length, penile diameter, and testicular volume were drawn using the generalized additive models for location, scale, and shape. Very similar growth curves were found for both penile length and penile diameter. Both of them gradually rose to 10 years of age and then sharply increased from 11 to 15 years of age. However, testicular volume changed little before the age of 10 years. This study contributes to the literature covering age-specific growth curve and charts about male external genitalia in Chinese children and adolescents. These age-related values are valuable in evaluating the growth and development status of male external genitalia and could be helpful in diagnosing genital disorders.展开更多
文摘In this paper, we introduce the concepts of additive generators and additive generator pair of <em>n</em>-dimensional overlap functions, in order to extend the dimensionality of overlap functions from 2 to <em>n</em>. We mainly discuss the conditions under which an <em>n</em>-dimensional overlap function can be expressed in terms of its generator pair.
基金supported by the Fujian Provincial Science and Technology Program“University-Industry Cooperation Project”(2024Y4015)National Key R&D Plan of Strategic International Scientific and Technological Innovation Cooperation Project(2018YFE0207800).
文摘The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.
基金supported by the Ministry of Agriculture,Forestry,and Fisheries of Japan (25093 C)JSPS KAKENHI (JP23H02262)
文摘The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.
基金Under the auspices of National Natural Science Foundation of China(No.41001363)
文摘This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.
基金supported by National Natural Science Foundation of China (51774219)Science and Technology Research Program of Hubei Ministry of Education(D20161103)Youth Science and technology Program of Wuhan(2016070204010099)
文摘A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.
基金Supported by the National Natural Science Foundation of China (61273131) 111 Project (B12018)+1 种基金 the Innovation Project of Graduate in Jiangsu Province (CXZZ12_0741) the Fundamental Research Funds for the Central Universities (JUDCF12034)
文摘Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation.
基金Under the auspices of the Project of National Natural Science Foundation of China ( No. 41001363)Autonomous Project of State Key Laboratory of Resources and Environmental Information System,Geo-information Tupu Theory and Virtual Geoscience
文摘There are typical ecosystems of littoral wetlands in the Yellow River Delta.In order to study the relationships between Tamarix chinensis and environmental variables and to predict T.chinensis potential distribution in the Yellow River Delta,641 vegetation samples and 964 soil samples were collected in the area in October of 2004,2005,2006 and 2007.The contents of soil organic matter,total phosphorus,salt,and soluble potassium were determined.Then,the analyzed data were interpolated into spatial raster data by Kriging interpolation method.Meanwhile,the digital elevation model,soil type map and landform unit map of the Yellow River Delta were also collected.Generalized Additive Models(GAMs) were employed to build species-environment model and then simulate the potential distribution of T.chinensis.The results indicated that the distribution of T.chinensis was mainly limited by soil salt content,total soil phosphorus content,soluble potassium content,soil type,landform unit,and elevation.The distribution probability of T.chinensis was produced with a lookup table generated by Grasp Module(based on GAMs) in software ArcView GIS 3.2.The AUC(Area Under Curve) value of validation and cross-validation of ROC(Receive Operating Characteristic) were both higher than 0.8,which suggested that the established model had a high precision for predicting species distribution.
文摘In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis.
基金supported by the Ministry of Environment(Environmental Protection Administration),Taiwan(Projects EPA-106-L103-02-A022,EPA-106-L102-02-A142)the"National"Science and Technology Council(Ministry of Science and Technology),Taiwan(Nos.108-2625-M-008-002,108-2119-M-008-003,108-2636-E-008-004,109-2636-E-008-008,110-2636-E-008-006,111-2636-E-008-014,and 112-2636-E-008-005(Young Scholar Fellowship Program),112-2119-M-008-010,and 108-2638-E-008-001-MY2(Shackleton Program Grant)).
文摘Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively.
基金supported by the National Key Research and Development Program of China(Nos.2023YFC3707301 and 2023YFC3705400)the Fundamental Research Funds for the Central Universities(Nos.ZB23003425 and 63211075)。
文摘To investigate the response of Roadside Monitoring Stations(RSs)to traffic-related air pollution,traffic and pollutant characteristics,influencing factors,and potential source characterization in Tianjin,China were determined based on roadside monitoring of real-world data conducted at RSs in 2022.The diurnal variation trend of pollutants at RSs was consistent with that at the National Monitoring Station(NM),with notably higher pollutant fluctuations during the morning and evening peak traffic times at RSs,where the average diurnal concentration was 41.46%higher than that at the NM.The generalized additive model(GAM)for nitrogen oxides(NO_(x))and carbon monoxide(CO),responding to themultiple influencing factors,performed well at RSs,with deviance explained by 86.6%and 61.4%,respectively.The synergistic effects of wind direction and speed contributed to most of the variations in NO_(x) and CO,which were 14.74%and 12.87%,respectively.Pollutant concentrations were highest under windless conditions,with pollutants originating primarily from local vehicle emissions.The model results indicated that medium-duty truck(MDT)traffic flow predominantly contributed to the variability in NO_(x) emissions,whereas passenger car(PC)traffic flow was the primary source of CO emissions from traffic variables.MDTs should be the focus of urban NO_(x) traffic emissions control.Potential-source analysis validated the results obtained from the GAM,and both analyses showed that RSs can better characterize traffic-related air pollutants.Furthermore,more stringent emission standards have effectively mitigated the release of pollutants from motor vehicles and contributed to the modernization of vehicle fleet composition,effectively decreasing CO concentrations.
基金supported by the National Natural Science Foundation of China(62373224,62333013,U23A20327)the Natural Science Foundation of Shandong Province(ZR2024JQ021)
文摘Dear Editor,Health management is essential to ensure battery performance and safety, while data-driven learning system is a promising solution to enable efficient state of health(SoH) estimation of lithium-ion(Liion) batteries. However, the time-consuming signal data acquisition and the lack of interpretability of model still hinder its efficient deployment. Motivated by this, this letter proposes a novel and interpretable data-driven learning strategy through combining the benefits of explainable AI and non-destructive ultrasonic detection for battery SoH estimation. Specifically, after equipping battery with advanced ultrasonic sensor to promise fast real-time ultrasonic signal measurement, an interpretable data-driven learning strategy named generalized additive neural decision ensemble(GANDE) is designed to rapidly estimate battery SoH and explain the effects of the involved ultrasonic features of interest.
基金funded by the Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station,China Institute of Water Resources and Hydropower Research(YSS202105)the National Natural Science Foundation of China(52269005)+3 种基金the Inner Mongolia Science and Technology Plan Project(2022YFSH0105)the Central Guidance for Local Science and Technology Development Fund Projects(2024ZY0002)the Inner Mongolia Autonomous Region University Youth Science and Technology Talent Project(NJYT 22037)the Inner Mongolia Agricultural University Young Teachers'Scientific Research Ability Improvement Project(BR220104).
文摘Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.
基金Supported by the National High Technology Research and Development Program of China (863 Program, No. 2003AA607030)National Key Technology Research and Development Program (No. 2006BAD09A05)
文摘The relationships between the neon flying squid, Ommastrephes bartrami, and the relative ocean environmental factors are analyzed. The environmental factors collected are sea surface temperature (SST), chlorophyll concentration (Chl-α) and sea surface height (SSH) from NASA, as well as the yields of neon flying squid in the North Pacific Ocean. The results show that the favorable temperature for neon flying squid living is 10℃-22℃ and the favorite temperature is between 15℃-17℃. The Chl-α concentration is 0.1-0.6 mg/m^3. When Chl-α concentration changes to 0.12-0.14 mg/m^3, the probability of forming fishing ground becomes very high. In most fishing grounds, the SSH is higher than the mean SSH. The generalized additive model (GAM) was applied to analyze the correlations between neon flying squid and ocean environmental factors. Every year, squids migrate northward from June to August and return southward during October-November, and the characteristics of the both migrations are very different. When squids migrate to the north, most relationships between the yields and SST are positive. The relationships are negative when squids move to southward. The relationships between the yields and Chl-a concentrations are negative from June to October, and insignificant in November. There is no obvious correlation between the catches of squid and longitude, but good with latitude.
基金This work was supported primarily by the National Key Research and Development Program of China(Grant Nos.2016YFA0602403,2017YFC1502505)the National Natural Science Funds(Grant No.41271544)+1 种基金the Startup Foundation for Introducing Talent of NUISTthe Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0906,2019QZKK0606)。
文摘China is one of the countries where landslides caused the most fatalities in the last decades. The threat that landslide disasters pose to people might even be greater in the future, due to climate change and the increasing urbanization of mountainous areas. A reliable national-scale rainfall induced landslide susceptibility model is therefore of great relevance in order to identify regions more and less prone to landsliding as well as to develop suitable risk mitigating strategies. However, relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area. The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China. In this context, it is aimed to explore the benefit of mixed effects modelling to counterbalance associated bias propagations. Six influencing factors including lithology, slope,soil moisture index, mean annual precipitation, land use and geological environment regions were selected based on an initial exploratory data analysis. Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information: Set 1(disregards the presence of incomplete landslide information), Set 2(excludes factors related to the incompleteness of landslide data), Set 3(accounts for factors related to the incompleteness via random effects). The variable sets were then introduced in a generalized additive model(GAM: Set 1 and Set 2) and a generalized additive mixed effect model(GAMM: Set 3) to establish three national-scale statistical landslide susceptibility models: models 1, 2 and 3. The models were evaluated using the area under the receiver operating characteristics curve(AUROC) given by spatially explicit and non-spatial cross-validation. The spatial prediction pattern produced by the models were also investigated. The results show that the landslide inventory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models. The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However, although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9), it was not associated with the most plausible representation of landslide susceptibility. The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias. The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility. However, a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g., the Kuenlun Mountains in the northern Tibetan Plateau). The non-linear mixed-effects model(Model 3) reduced the impact of these biases best by introducing bias-describing variables as random effects. Among the three models, Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive performance(median AUROC of spatial cross validation 0.84) compared to the other two models(median AUROCs of 0.81 and 0.79, respectively). We conclude that ignoring landslide inventory-based incompleteness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas.
基金Supported by the Program for New Century Excellent Talents in University (No.NCET-06-0437)the National High Technology Research and Development Program of China (863 Program) (No.2007AA092201+2 种基金2007AA092202)Shanghai Leading Academic Discipline Project (No.S30702)Doctorship Fund of Shanghai Ocean University (No.06-326)
文摘Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.
基金The National Key R&D Program of China under contract No.2017YFE0104400the National Natural Science Foundation of China under contract No.31772852the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0501-2。
文摘Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.
基金Supported by the Public Science and Technology Research Funds Projects of Ocean(No.201305030)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120132130001)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.201022001,201262004)the National Natural Science Foundation of China(No.41006083)
文摘Spatial-seasonal patterns in fish diversity in Haizhou Bay were studied based on stratified random surveys conducted in 2011.Principal component analysis was conducted to distinguish different diversity components,and the relationships among 11 diversity indices were explored.Generalized additive models were constructed to examine the environmental effects on diversity indices.Eleven diversity indices were grouped into four components:(1) species numbers and richness,(2) heterogeneous indices,(3) evenness,and(4) taxonomic relatedness.The results show that diversity indices among different components are complementary.Spatial patterns show that fish diversity was higher in coastal areas,which was affected by complex bottom topography and spatial variations of water mass and currents.Seasonal trends could be best explained by the seasonal migration of dominant fish species.Fish diversity generally declined with increasing depth except for taxonomic distinctness,which increased with latitude.In addition,bottom temperature had a significant effect on diversity index of richness.These results indicate that substrate complexity and environmental gradients had important influences on fish diversity patterns,and these factors should be considered in fishery resource management and conservation.Furthermore,diversity in two functional groups(demersal/pelagic fishes) was influenced by different environmental factors.Therefore,the distribution of individual species or new indicators in diversity should be applied to examine spatio-seasonal variations in fish diversity.
文摘Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha?1. Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6 m of the lower stem of dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.
文摘Genital size is a crucial index for the assessment of male sexual development, as abnormal penile or testicular size may be the earliest visible clinical manifestation of some diseases. However, there is a lack of data regarding penile and testicular size measurements for Chinese boys at all stages of childhood and puberty. This cross-sectional study aimed to develop appropriate growth curves and charts for male external genitalia among children and adolescents aged 0-17 years in Chongqing, China. A total of 2974 boys were enrolled in the present study. Penile length was measured using a rigid ruler, penile diameter was measured using a pachymeter, and testicular volume was determined using a Prader orchidometer. Age-specific percentile curves for penile length, penile diameter, and testicular volume were drawn using the generalized additive models for location, scale, and shape. Very similar growth curves were found for both penile length and penile diameter. Both of them gradually rose to 10 years of age and then sharply increased from 11 to 15 years of age. However, testicular volume changed little before the age of 10 years. This study contributes to the literature covering age-specific growth curve and charts about male external genitalia in Chinese children and adolescents. These age-related values are valuable in evaluating the growth and development status of male external genitalia and could be helpful in diagnosing genital disorders.