期刊文献+
共找到616篇文章
< 1 2 31 >
每页显示 20 50 100
Effects of Additive AlCl_3 on Crystal Phase, Particle Size and Microstructural Parameters of Nanocrystalline TiO_2 Prepared by HF-PCVD 被引量:2
1
作者 HaipingXU YanpingSUN XinmouCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期641-643,共3页
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer... Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable. 展开更多
关键词 additive AlCl_3 Nanocrystalline TiO_2 Crystal phase Particle size Microstructural parameters
在线阅读 下载PDF
Additive manufacturing-by-design for support structures:a critical review
2
作者 Jinlong Su Yang Mo +3 位作者 Peijie Shangguan Chinnapat Panwisawas Fulin Jiang Swee Leong Sing 《International Journal of Extreme Manufacturing》 2025年第5期52-80,共29页
Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in ... Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM. 展开更多
关键词 additive manufacturing support structure design and optimisation SIMULATION SUSTAINABILITY 3D printing
在线阅读 下载PDF
Realizing dendrite-free Zn anode using an efficient sulfone-based electrolyte additive for high-performance aqueous zinc-ion batteries
3
作者 Hongda Cui Wenxin Li +2 位作者 Hongming Chen Zijin Liu Dan Zhou 《Journal of Energy Chemistry》 2025年第10期455-465,共11页
Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by s... Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs. 展开更多
关键词 AZIBs 3-Cyclobutene sulfone Electrolyte additive Highly reversible Zn anode
在线阅读 下载PDF
Sparse-view irradiation processing volumetric additive manufacturing
4
作者 Huiyuan Wang Fangyuan Gao +6 位作者 Yu Shi Kai Wang Xinbo Wei Chunyang Ma Xiewen Wen Xueli Chen Jiebo Li 《International Journal of Extreme Manufacturing》 2025年第6期376-388,共13页
Volumetric additive manufacturing(VAM) transforms traditional 2D light pattern projection into spatial light field energy superposition,maximizing the utilization of radiated light and allowing for ultra-fast,support-... Volumetric additive manufacturing(VAM) transforms traditional 2D light pattern projection into spatial light field energy superposition,maximizing the utilization of radiated light and allowing for ultra-fast,support-free printing,which has specific applications in fields such as life sciences and optics.However,traditional VAM processes require numerous projections and extensive computational preparation,limiting practical applications due to low projection efficiency and prolonged calculation times.In this study,we developed sparse-view irradiation processing VAM(SVIP-VAM),employing an optimized odd-even(OE) irradiation strategy inspired by sparse-view computed tomography.Theoretically,we demonstrated structural contour reconstruction feasibility with as few as 8 projections.Using this sparse-view approach,we achieved high-quality fabrication with only 15 projections,enhancing each projection efficiency by over 60 times and reducing projection set computational time by nearly 10-fold.Ultimately,this efficient sparse-view method significantly expands VAM applications into fields requiring rapid manufacturing,such as tissue engineering,medical implants,and aerospace manufacturing. 展开更多
关键词 volumetric additive manufacturing 3D printing sparse view odd-even irradiation
在线阅读 下载PDF
A comprehensive review and future perspectives of simulation approaches in wire arc additive manufacturing(WAAM)
5
作者 Zhonghao Chen Lei Yuan +4 位作者 Zengxi Pan Hongtao Zhu Ninshu Ma Donghong Ding Huijun Li 《International Journal of Extreme Manufacturing》 2025年第2期588-628,共41页
Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of W... Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of WAAM processes,which involves intricate thermal dynamics,phase transitions,and metallurgical,mechanical,and chemical interactions,presents considerable challenges in final product qualities.Simulation technologies in WAAM have proven invaluable,providing accurate predictions in key areas such as material properties,defect identification,deposit morphology,and residual stress.These predictions play a critical role in optimising manufacturing strategies for the final product.This paper provides a comprehensive review of the simulation techniques applied in WAAM,tracing developments from 2013 to 2023.Initially,it analyses the current challenges faced by simulation methods in three main areas.Subsequently,the review explores the current modelling approaches and the applications of these simulations.Following this,the paper discusses the present state of WAAM simulation,identifying specific issues inherent to WAAM simulation itself.Finally,through a thorough review of existing literature and related analysis,the paper offers future perspectives on potential advancements in WAAM simulation strategies. 展开更多
关键词 wire arc additive manufacturing SIMULATION machine learning computational fluid dynamics finite element method 3D printing
在线阅读 下载PDF
钕铁硼在AlCl_3-EMIC离子液体中电沉积铝层的耐腐蚀性能 被引量:10
6
作者 陈静 凌国平 《材料保护》 CAS CSCD 北大核心 2011年第11期1-4,12,共5页
在钕铁硼(NdFeB)表面电沉积铝可提高其耐蚀性,而铝的电沉积只能在无水体系中进行。在摩尔比为2:1的AlCl_3-EMIC(氯化1-甲基-3-乙基咪唑)离子液体中对NdFeB表面电沉积铝,利用扫描电镜(SEM)、能谱、刻划剥离及热震试验对铝镀层的表面形貌... 在钕铁硼(NdFeB)表面电沉积铝可提高其耐蚀性,而铝的电沉积只能在无水体系中进行。在摩尔比为2:1的AlCl_3-EMIC(氯化1-甲基-3-乙基咪唑)离子液体中对NdFeB表面电沉积铝,利用扫描电镜(SEM)、能谱、刻划剥离及热震试验对铝镀层的表面形貌、成分及其与基体的结合情况进行了分析,采用中性盐雾试验、极化曲线和交流阻抗谱研究了镀层的耐蚀性能。结果表明:以2.5 A/dm^2电流密度对NdFeB阳极活化20 min后,其表面氧化膜被有效去除,电沉积后得到致密、结合优良的铝层;NdFeB在离子液体中镀铝后耐蚀性得到显著提高,自腐蚀电流密度减小2个数量级,阻抗值增加2个数量级,中性盐雾腐蚀200 h后镀层完好无损。 展开更多
关键词 电沉积铝 NDFEB AlCl_3-EMIC离子液体 阳极活化 耐蚀性
在线阅读 下载PDF
INFLUENCE OF Li_2CO_3-SiO_2 ADDITIVE ON THE PROPERTIES AND PROCESSING OF DOUBLE-FUNCTION SrTiO_3-BASED LOW VOLTAGE VARISTOR CERAMICS
7
作者 季惠明 梁辉 郝俊杰 《Transactions of Tianjin University》 EI CAS 2001年第2期127-131,共5页
Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio o... Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics. 展开更多
关键词 SrTiO 3 VARISTOR liquid phase additive PROPERTY
在线阅读 下载PDF
INFLUENCE OF Li2CO3-SiO2 ADDITIVE ON THE PROPERTIES AND PROCESSING OF DOUBLE-FUNCTION SrTiO3-BASED LOW VOLTAGE VARISTOR CERAMICS
8
作者 季惠明 梁辉 郝俊杰 《Transactions of Tianjin University》 EI CAS 2001年第2期127-131,共页
Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio o... Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics. 展开更多
关键词 SrTiO 3 VARISTOR liquid phase additive PROPERTY
全文增补中
Development Trends in Additive Manufacturing and 3D Printing 被引量:64
9
作者 Bingheng Lu Dichen Li Xiaoyong Tian 《Engineering》 SCIE EI 2015年第1期85-89,共5页
Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on tr... Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five "any"s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes. 展开更多
关键词 additive manufacturing 3D printing fabricationmodes customized fabrication innovative design
在线阅读 下载PDF
Applying Neural-Network-Based Machine Learning to Additive Manufacturing:Current Applications,Challenges,and Future Perspectives 被引量:25
10
作者 Xinbo Qi Guofeng Chen +2 位作者 Yong Li Xuan Cheng Changpeng Li 《Engineering》 SCIE EI 2019年第4期721-729,共9页
Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturi... Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturing.However,AM processing parameters are difficult to tune,since they can exert a huge impact on the printed microstructure and on the performance of the subsequent products.It is a difficult task to build a process-structure-property-performance(PSPP)relationship for AM using traditional numerical and analytical models.Today,the machine learning(ML)method has been demonstrated to be a valid way to perform complex pattern recognition and regression analysis without an explicit need to construct and solve the underlying physical models.Among ML algorithms,the neural network(NN)is the most widely used model due to the large dataset that is currently available,strong computational power,and sophisticated algorithm architecture.This paper overviews the progress of applying the NN algorithm to several aspects of the AM whole chain,including model design,in situ monitoring,and quality evaluation.Current challenges in applying NNs to AM and potential solutions for these problems are then outlined.Finally,future trends are proposed in order to provide an overall discussion of this interdisciplinary area. 展开更多
关键词 additive manufacturing 3D PRINTING NEURAL network MACHINE learning Algorithm
在线阅读 下载PDF
Recent progress and perspectives in additive manufacturing of magnesium alloys 被引量:26
11
作者 Zhuoran Zeng Mojtaba Salehi +3 位作者 Alexander Kopp Shiwei Xu Marco Esmaily Nick Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1511-1541,共31页
Magnesium alloys remain critical in the context of light-weighting and advanced devices. The increased utilisation of magnesium(Mg)each year reveals growing demand for its Mg-based alloys. Additive manufacturing(AM) p... Magnesium alloys remain critical in the context of light-weighting and advanced devices. The increased utilisation of magnesium(Mg)each year reveals growing demand for its Mg-based alloys. Additive manufacturing(AM) provides the possibility to directly manufacture components in net-shape, providing new possibilities and applications for the use of Mg-alloys, and new prospects in the utilisation of novel physical structures made possible from ‘3D printing’. The review herein seeks to holistically explore the additive manufacturing of Mg-alloys to date, including a synopsis of processes used and properties measured(with a comparison to conventionally prepared Mg-alloys). The challenges and possibilities of AM Mg-alloys are critically elaborated for the field of mechanical metallurgy. 展开更多
关键词 MAGNESIUM additive manufacturing MICROSTRUCTURE 3D printing Mechanical properties Electrochemical properties
在线阅读 下载PDF
3DPMD-Arc-based additive manufacturing with titanium powder as raw material 被引量:13
12
作者 Hoefer Kevin Mayr Peter 《China Welding》 EI CAS 2019年第1期11-15,共5页
The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components with and without reinforcing particles in layer-by-layer design. Various demonstrators are prepared and analyzed. Th... The study aims to demonstrate the suitability of the 3DPMD for the production of titanium components with and without reinforcing particles in layer-by-layer design. Various demonstrators are prepared and analyzed. The microstructure, the porosity and the hardness values of the different structures are compared with each other through metallographic cross-sections. The uniform distribution of the carbides and the interaction with the matrix was analyzed by SEM and EDX.The miller-test method(ASTM G75-07) was used to determine data for the relative abrasivity of the structures. In summary, 3DPMD offers the possibility to produce titanium structures with and without reinforced particles. Using automated routines, it is possible to generate metal structures using welding robots directly from the CAD drawings. Microstructures and properties are directly related to the process and therefore material-process-property relationships are discussed within this work. 展开更多
关键词 additive manufacturing PLASMA TITANIUM 3D PLASMA metal DEPOSITION REINFORCED PARTICLES
在线阅读 下载PDF
Interfacial Bonding Mechanism and Mechanical Performance of Continuous Fiber Reinforced Composites in Additive Manufacturing 被引量:10
13
作者 Congze Fan Zhongde Shan +2 位作者 Guisheng Zou Li Zhan Dongdong Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期131-141,共11页
The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.Howeve... The additive manufacturing of continuous fiber composites has the advantage of a high-precision and efficient forming process,which can realize the lightweight and integrated manufacturing of complex structures.However,many void defects exist between layers in the printing process of additive manufacturing;consequently,the bonding performance between layers is poor.The bonding neck is considered a key parameter for representing the quality of interfacial bonding.In this study,the formation mechanism of the bonding neck was comprehensively analyzed.First,the influence of the nozzle and basement temperatures on the printing performance and bonding neck size was measured.Second,CT scanning was used to realize the quantitative characterization of bonding neck parameters,and the reason behind the deviation of actual measurements from theoretical calculations was analyzed.When the nozzle temperature increased from 180 to 220℃,CT measurement showed that the bonding neck diameter increased from 0.29 to 0.34 mm,and the cross-sectional porosity reduced from 5.48%to 3.22%.Finally,the fracture mechanism was studied,and the influence of the interfacial bonding quality on the destruction process of the materials was determined.In conclusion,this study can assist in optimizing the process parameters,which improves the precision of the printing parts and performance between the layers. 展开更多
关键词 3D printing Thermoplastic resin Continuous fiber additive manufacturing
在线阅读 下载PDF
Additive Manufacture of Ceramics Components by Inkjet Printing 被引量:19
14
作者 Brian Derby 《Engineering》 SCIE EI 2015年第1期113-123,共11页
In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable... In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the "coffee ring" defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method. 展开更多
关键词 additive manufacture 3D printing inkjet printing ceramic components
在线阅读 下载PDF
A review on additive manufacturing of ceramic matrix composites 被引量:8
15
作者 Jinxing Sun Daorong Ye +7 位作者 Ji Zou Xiaoteng Chen Yue Wang Jinsi Yuan Haowen Liang Hongqiao Qu Jon Binner Jiaming Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期1-16,共16页
Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compa... Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compared to single-phase ceramic components.It also opens up a new way to shape damage-tolerant ceramic composites with co-continuous phase reinforcement inspired by natural ma-terials.Nowadays,a large variety of AM techniques has been successfully applied to fabricate CMCs,but variable properties have been obtained so far.This article provides a comprehensive review on the AM of ceramic matrix composites through a systematic evaluation of the capabilities and limitations of each AM technique,with an emphasis on reported results regarding the properties and potentials of AM man-ufactured ceramic matrix composites. 展开更多
关键词 additive manufacturing Ceramic matrix composites 3D printing Mechanical properties Bioinspired composites
原文传递
Additive manufacturing and foundry innovation 被引量:7
16
作者 Yu-sheng Shi Jin-liang Zhang +11 位作者 Shi-feng Wen Bo Song Chun-ze Yan Qing-song Wei Jia-min Wu Ya-jun Yin Jian-xin Zhou Rui Chen Wei Zhou He-ping Jia Huan-qing Yang Hai Nan 《China Foundry》 SCIE CAS 2021年第4期286-295,共10页
Additive manufacturing is expected to transform and upgrade the traditional foundry industry to realize the integrated manufacturing and rapid and low-cost development of high-performance components with complex shape... Additive manufacturing is expected to transform and upgrade the traditional foundry industry to realize the integrated manufacturing and rapid and low-cost development of high-performance components with complex shapes.The additive manufacturing technology commonly applied in casting mold preparation(fusible molds,sand molds/cores and ceramic cores)mainly includes selective laser sintering(SLS)and binder injection three-dimensional printing(3DP).In this work,the research status of SLS/3DP-casting processes on material preparation,equipment development,process optimization,simulation and application cases in aerospace,automotive and other fields were elaborated.Finally,the developing trends of the additive manufacturing technology in the future of foundry field are introduced,including multi-material sand molds(metal core included),ceramic core-shell integration and die-casting dies with conformal cooling runners. 展开更多
关键词 additive manufacturing FOUNDRY selective laser sintering 3D printing multiple materials die-casting dies
在线阅读 下载PDF
Fabrication and flexural strength of porous Si3N4 ceramics with Li2CO3 and Y2O3 as sintering additives 被引量:6
17
作者 HU Hai-long LUO Shi-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2548-2556,共9页
By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental... By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications. 展开更多
关键词 sintering additive flexural strength POROSITY glassy phase Si3N4 porous ceramics
在线阅读 下载PDF
A review of additive manufacturing technology and its application to foundry in China 被引量:5
18
作者 Shi-yan Tang Li Yang +2 位作者 Zi-tian Fan Wen-ming Jiang Xin-wang Liu 《China Foundry》 SCIE CAS 2021年第4期249-264,共16页
The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and... The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and quickly cast complex castings.The combination of additive manufacturing and traditional casting technology can break the constraint of traditional casting technology,improve casting flexibility,and ameliorate the working environment.Besides,additive manufacturing promotes the realization of"free casting",greatly simplifying the processing procedures and shortening the manufacturing cycle.This paper summarizes the basic principle of additive manufacturing technology and its development situation domestically and overseas,mainly focusing on the development status of several main additive manufacturing technologies applicable to the foundry field,including three-dimensional printing,selective laser sintering,stereolithography,layered extrusion forming,etc.Finally,the future development trend of additive manufacturing technology in the foundry field is prospected. 展开更多
关键词 additive manufacturing rapid prototyping 3D printing casting process rapid casting
在线阅读 下载PDF
Additive manufacturing of sustainable biomaterials for biomedical applications 被引量:4
19
作者 Zia Ullah Arif Muhammad Yasir Khalid +5 位作者 Reza Noroozi Mokarram Hossain Hao Tian Harvey Shi Ali Tariq Seeram Ramakrishna Rehan Umer 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期1-36,共36页
Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including ... Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including bioactivity,renewability,bioresorbability,biocompatibility,biodegradability and hydrophilicity.Additive manufacturing(AM)is a flexible and intricate manufacturing technology,which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems.Three-dimensional(3D)printing of these sustainable materials is applied in functional clinical settings including wound dressing,drug delivery systems,medical implants and tissue engineering.The present review highlights recent advancements in different types of biopolymers,such as proteins and polysaccharides,which are employed to develop different biomedical products by using extrusion,vat polymerization,laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional(4D)bioprinting techniques.It also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds,and addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AMtechniques.Ideally,there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas.We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future. 展开更多
关键词 3D printing Biopolymers BIOMEDICAL Tissue engineering Sustainable biomaterials additive manufacturing
暂未订购
Additive Manufacturing of SiC Ceramics with Complicated Shapes Using the FDM Type 3D-Printer 被引量:8
20
作者 Hisaya Masuda Yoshio Ohta Mikito Kitayama 《Journal of Materials Science and Chemical Engineering》 2019年第2期1-12,共12页
Silicon carbide (SiC) ceramics have excellent properties and widely used for high temperature applications. So far, joining techniques have been applied to fabricate large SiC ceramics with complicated shapes. In this... Silicon carbide (SiC) ceramics have excellent properties and widely used for high temperature applications. So far, joining techniques have been applied to fabricate large SiC ceramics with complicated shapes. In this work, the additive manufacturing (AM) technique was examined to fabricated SiC ceramics with complicated hollow structures using the Fused Deposition Modeling (FDM) type 3D-printer. To mold the hollow structure for the applications such as heat exchangers, the “support-less” condition must be achieved. Thus, extruded SiC-phenol resin compounds must be cured immediately after molding to keep the molded shapes. To increase the thermal conductivity of the SiC compounds, the combinations of commercial SiC powders with different average diameters were examined for increasing the volume fraction of SiC particles to the phenol resin. SiC compounds with optimized rheological properties for the modified FDM-type 3D-printer were successfully obtained. 展开更多
关键词 additive Manufacturing 3D-Printer FDM CERAMICS SiC
暂未订购
上一页 1 2 31 下一页 到第
使用帮助 返回顶部