期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
1
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
A novel wire arc additive and subtractive hybrid manufacturing process optimization method
2
作者 GUO Yiming ZHANG Wanyuan +2 位作者 XIAO Mingkun SONG Shida ZHANG Xiaoyong 《Journal of Southeast University(English Edition)》 2025年第1期109-117,共9页
A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are ... A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are modeled by level set functions.Secondly,the mathematical model of the additive direction optimization problem is established,and an improved particle swarm optimization algorithm is designed to decide the best additive direction.Then,the two-step strategy is used to plan the hybrid manufacturing alternating sequence.The target parts are directly divided into various processing regions;each processing region is optimized based on manufacturability and manufacturing efficiency,and the optimal hybrid manufacturing alternating sequence is obtained by merging some processing regions.Finally,the method is used to outline the process plan of the designed example model and applied to the actual hybrid manufacturing process of the model.The manufacturing result shows that the method can meet the main considerations in hybrid manufacturing.In addition,the degree of automation of process planning is high,and the dependence on manual intervention is low. 展开更多
关键词 wire arc additive manufacturing hybrid manufacturing process optimization MANUFACTURABILITY
在线阅读 下载PDF
Synergistically Improving the Strength and Anisotropy of Wire Arc Additively Manufactured Al-Mg-Sc-Zr alloy by Regulating Heat Input
3
作者 Xuru Hou Lin Zhao +5 位作者 Shubin Ren Yun Peng Yang Cao Chengyong Ma Zhiling Tian Xuanhui Qu 《Additive Manufacturing Frontiers》 2025年第3期209-227,共19页
Wire arc additive manufacturing(WAAM)is one of the most promising approaches to manufacturing large and complex metal components owing to its low cost and high efficiency.However,pores and coarse columnar grains cause... Wire arc additive manufacturing(WAAM)is one of the most promising approaches to manufacturing large and complex metal components owing to its low cost and high efficiency.However,pores and coarse columnar grains caused by thermal accumulation in WAAM significantly decrease the strength and increase the anisotropy,preventing the achievement of both high strength and isotropy.In this study,the strength and anisotropy of AlMg-Sc-Zr alloys were improved by regulating heat input.The results indicated that as the heat input increased from 60 to 99 J/mm,all the components had lower porosity(lower than 0.04%),the size of the Al_(3)(Sc_(1-x),Zr_(x))phases decreased,and the number density increased.The average grain size gradually decreased,and the grain morphologies transformed from coarse equiaxed grain(CEG)+fine equiaxed grain(FEG)to FEG owing to the increase in Al_(3)(Sc_(1-x),Zr_(x))phases with increasing heat input.After heat treatment at 325℃for 6 h,high-density dispersed Al_(3)Sc phases(<10 nm)precipitated.The alloy possessed the highest strength at 79 J/mm,ultimate tensile strength(UTS)of approximately 423±3 MPa,and in-plane anisotropy of approximately 4.3%.At a heat input of 99 J/mm,the in-plane anisotropy decreased to 1.2%and UTS reached 414±5 MPa.The reduction in the CEG prolonged the crack propagation path,which improved the UTS in the vertical direction and reduced the anisotropy.Theoretical calculations indicated that the main strengthening mechanisms were solid solution and precipitation strengthening.This study lays the theoretical foundations for WAAM-processed high-strength and isotropic Al alloy components. 展开更多
关键词 wire arc additive manufacturing(WAAM) Al-Mg-Sc-Zr alloy MICROSTRUCTURES High strength ANISOTROPY
在线阅读 下载PDF
Elevated temperature tensile properties of wire arc additively manufactured 308L austenitic stainless steel
4
作者 A.Rajesh Kannan Yasam Palguna +2 位作者 Hafiz Muhammad Rehan Tariq N.Siva Shanmugam Tea-Sung Jun 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2164-2176,共13页
Wire arc additive manufacturing(WAAM)presents a promising approach for fabricating medium-to-large austenitic stainless steel components,which are essential in industries like aerospace,pressure vessels,and heat excha... Wire arc additive manufacturing(WAAM)presents a promising approach for fabricating medium-to-large austenitic stainless steel components,which are essential in industries like aerospace,pressure vessels,and heat exchangers.This research examines the mi-crostructural characteristics and tensile behaviour of SS308L manufactured via the gas metal arc welding-based WAAM(WAAM 308L)process.Tensile tests were conducted at room temperature(RT,25℃),300℃,and 600℃in as-built conditions.The microstructure con-sists primarily of austenite grains with retainedδ-ferrite phases distributed within the austenitic matrix.The ferrite fraction,in terms of fer-rite number(FN),ranged between 2.30 and 4.80 along the build direction from top to bottom.The ferrite fraction in the middle region is 3.60 FN.Tensile strength was higher in the horizontal oriented samples(WAAM 308L-H),while ductility was higher in the vertical ones.Tensile results show a gradual reduction in strength with increasing test temperature,in which significant dynamic strain aging(DSA)is observed at 600℃.The variation in serration behavior between the vertical and horizontal specimens may be attributed to microstructural differences arising from the build orientation.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of WAAM 308L at 600℃were(240±10)MPa,(442±16)MPa,and(54±2.00)%,respectively,in the horizontal orientation(WAAM 308L-H),and(248±9)MPa,(412±19)MPa,and(75±2.80)%,respectively,in the vertical orientation(WAAM 308L-V).Fracture surfaces revealed a transition from ductile dimple fracture at RT and 300℃to a mixed ductile-brittle failure with intergranular facets at 600℃.The research explores the applicability and constraints of WAAM-produced 308L stainless steel in high-temperature conditions,offering crucial in-sights for its use in thermally resistant structural and industrial components. 展开更多
关键词 wire arc additive manufacturing austenitic stainless steels microstructure mechanical properties elevated temperatures
在线阅读 下载PDF
Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy:The Formation of Nano-scaled AlMn Phase
5
作者 Dongchao Li Fen Zhang +2 位作者 Lanyue Cui Yueling Guo Rongchang Zeng 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1069-1082,共14页
Additive manufacturing(AM)technologies,with their high degree of flexibility,enhance material utilization in the fabrication of large magnesium alloy parts,effectively meeting the demands of complex geometries.However... Additive manufacturing(AM)technologies,with their high degree of flexibility,enhance material utilization in the fabrication of large magnesium alloy parts,effectively meeting the demands of complex geometries.However,research on the corrosion resistance of magnesium alloy components produced via AM is currently limited.This study investigates the microstructural and corrosion characteristics of AZ91D magnesium alloy fabricated by wire arc additive manufacturing(WAAM)compared to its cast counterpart.A large-sized AZ91D bulk part was deposited on an AZ31 base plate using a layer-by-layer stacking approach.The results showed that the WAAM AZ91D was featured by obviously refined grains from 228.92μm of the cast one to 52.92μm on the travel direction-through thickness(TD-TT)and 50.07μm on the normal direction-through thickness(ND-TT).The rapid solidification process of WAAM inhibited the formation of β-Mg_(17)Al_(12) phase while promoting the formation of uniformly distributed network of dislocations,the dispersive precipitation of nano Al_(8)Mn_(5) phase,as well as Zn segregation.WAAM AZ91D demonstrated the occurrence of pitting corrosion and inferior corrosion resistance compared to cast AZ91D,attributed to the micro-galvanic corrosion between the α-Mg matrix and Al_(8)Mn_(5) particles and the increased number of grain boundaries. 展开更多
关键词 Magnesium alloy wire arc additive manufacturing(WAAM) Corrosion Layer-by-layer stacking Intermetallic compound
原文传递
Wire arc additive manufacturing of Al-Si-Mg aluminum alloy through wire−powder synchronous deposition
6
作者 Yun-fei MENG Qian-xi YU +2 位作者 Xu WU Ming GAO Hui CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第3期701-714,共14页
Owing to the lack of matching commercial welding wires,the development of wire arc additive manufacturing(WAAM)for most aluminum alloys is hindered.A wire-powder synchronous arc additive manufacturing(WPAAM)was propos... Owing to the lack of matching commercial welding wires,the development of wire arc additive manufacturing(WAAM)for most aluminum alloys is hindered.A wire-powder synchronous arc additive manufacturing(WPAAM)was proposed to prepare the target Al-Si-Mg aluminum alloy.Based on the synchronous deposition of AlSi_(12) wire and pure Mg powder,the deposition width of the WPAAMed thin-wall was increased by 61% compared with that of WAAMed thin-wall using AlSi_(12) wire,and the machining allowance was reduced by 81%.The added Mg powder benefited to form refined equiaxed grains,and reduced the average grain size of the WPAAMed thin-wall to 47.1μm,showing a decrease of 23.8% relatively to that of the WAAMed thin-wall.Besides,Mg reacted with Si to form Mg_(2)Si strengthening phases.The mechanical properties tests showed that the ultimate tensile strength and elongation of the WPAAMed thin-wall increased up to 174.5 MPa and 4.1%,reaching 92% and 60% those of the WAAMed thin-wall,respectively. 展开更多
关键词 wire arc additive manufacturing wire-powder synchronous deposition Al-Si-Mg aluminum alloy forming accuracy mechanical properties
在线阅读 下载PDF
Corrosion Behaviour of Wire Arc Additive Manufactured AA2024 Alloy Thin Wall Structure:The Influence of Interpass Rolling
7
作者 Yuheng Li You Lv +3 位作者 Zehua Dong Wei Guo Xinxin Zhang Xiaorong Zhou 《Acta Metallurgica Sinica(English Letters)》 2025年第12期2197-2216,共20页
The present work investigates the corrosion behaviour of an AA2024 alloy thin wall structure produced by wire arc additive manufacturing(WAAM)with interpass rolling,focussing on the influence of interpass rolling.It i... The present work investigates the corrosion behaviour of an AA2024 alloy thin wall structure produced by wire arc additive manufacturing(WAAM)with interpass rolling,focussing on the influence of interpass rolling.It is found that although interpass rolling does not change the typical configuration of thin wall structure,i.e.melt pool zone(MPZ),melt pool border(MPB)and heat-affected zone(HAZ),the plastic deformation introduced by interpass rolling leads to the variation of grain-stored energy across the structure,which consequently results in the highest corrosion susceptibility of MPB due to its relatively high stored energy. 展开更多
关键词 wire arc additive manufacturing AA2024 alloy Thin wall structure Grain-stored energy Localized corrosion
原文传递
A comprehensive review and future perspectives of simulation approaches in wire arc additive manufacturing(WAAM)
8
作者 Zhonghao Chen Lei Yuan +4 位作者 Zengxi Pan Hongtao Zhu Ninshu Ma Donghong Ding Huijun Li 《International Journal of Extreme Manufacturing》 2025年第2期588-628,共41页
Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of W... Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of WAAM processes,which involves intricate thermal dynamics,phase transitions,and metallurgical,mechanical,and chemical interactions,presents considerable challenges in final product qualities.Simulation technologies in WAAM have proven invaluable,providing accurate predictions in key areas such as material properties,defect identification,deposit morphology,and residual stress.These predictions play a critical role in optimising manufacturing strategies for the final product.This paper provides a comprehensive review of the simulation techniques applied in WAAM,tracing developments from 2013 to 2023.Initially,it analyses the current challenges faced by simulation methods in three main areas.Subsequently,the review explores the current modelling approaches and the applications of these simulations.Following this,the paper discusses the present state of WAAM simulation,identifying specific issues inherent to WAAM simulation itself.Finally,through a thorough review of existing literature and related analysis,the paper offers future perspectives on potential advancements in WAAM simulation strategies. 展开更多
关键词 wire arc additive manufacturing SIMULATION machine learning computational fluid dynamics finite element method 3D printing
在线阅读 下载PDF
Microstructure and Properties of Heterogeneous Composite Tubular Bionic Component Fabricated by Wire and Arc Additive Manufacturing
9
作者 Lindi Wu Yi Chen +5 位作者 Shaozhu Liu Wei Zhang Zhiyao Liu Yang Li Yutao Pei Sansan Ao 《Journal of Bionic Engineering》 2025年第5期2521-2538,共18页
Heterogeneous manufacturing is a topic that continues to receive attention.As an emerging manufacturing technology,additive manufacturing can provide strong technical support for heterogeneous manufacturing.In this st... Heterogeneous manufacturing is a topic that continues to receive attention.As an emerging manufacturing technology,additive manufacturing can provide strong technical support for heterogeneous manufacturing.In this study,both homogeneous and heterogeneous composite tubular bionic components were fabricated based on the cold metal transition technology,and the influence of deposition current on the microstructure and mechanical properties of the components was studied.The results show that the interface of the as-deposited heterogeneous composite component is well bonded,and there is an obvious mechanical interlocking structure.The compressive yield strength and elongation of the heterogeneous composite components are higher than those of the homogeneous components,and are positively correlated with the deposition current.Due to the fluctuation of element content,there are a large number of fine grain structures at the interface of the heterogeneous composite components,which increases the mechanical properties. 展开更多
关键词 Cold metal transition wire and arc additive manufacturing Heterogeneous structure Bionic component
在线阅读 下载PDF
The creep properties and mechanism of Ti-6Al-4V with ultra-lowβcontents fabricated by wire arc additive manufacturing
10
作者 Jiachen Wang Zixiang Li +1 位作者 Qianru Wu Tianqiu Xu 《Additive Manufacturing Frontiers》 2025年第4期184-196,共13页
Ti-6Al-4V(Ti64)alloys are widely used in the aerospace and automotive industries owing to their excellent high-temperature mechanical properties.This study investigated the creep behavior of Ti64 samples with ultra-lo... Ti-6Al-4V(Ti64)alloys are widely used in the aerospace and automotive industries owing to their excellent high-temperature mechanical properties.This study investigated the creep behavior of Ti64 samples with ultra-lowβcontent(<1%)fabricated by wire arc additive manufacturing(WAAM)under high-temperature and high-stress conditions.The creep properties of the WAAM Ti64 samples were evaluated at 600°C and 700°C with different stresses,and they were analyzed using electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).Commercially forged Ti64 samples were used as controls to compare their microstructures.As the stress increased,the degree of recrystallization intensified,leading to finer recrystallized grains.After high-temperature deformation,theβcontent in WAAM samples increased from less than 1%to over 8%.The dislocation density was high at low deformations,and the degree of recrystallization was low,suggesting superior creep resistance of the WAAM samples.The stress exponent,EBSD,and TEM analyses confirmed that dislocation movement primarily governs creep deformation in WAAM Ti64.Conversely,the forged samples exhibited easier deformation,lower dislocation density,higher recrystallization,and inferior creep resistance.This research highlights the impact ofβcontent and microstructure on the creep behavior of Ti64.The WAAM Ti64 with ultra-lowβcontent demonstrates enhanced creep resistance compared to commercially forged samples,primarily due to its unique microstructure with closely interconnectedαphases and lowerβ-phase content. 展开更多
关键词 wire arc additive manufacturing Titanium alloys Creep mechanism Characterization RECRYSTALLIZATION
在线阅读 下载PDF
Isotropic high strength Mg-Gd-Y-Zn-Zr alloy fabricated by wire arc additive manufacturing based on cold metal transfer
11
作者 Ze Deng Qixin Su +4 位作者 Mengfan Chen Fulin Wang Linda Ke Fenghua Wang Jie Dong 《Journal of Magnesium and Alloys》 2025年第9期4189-4205,共17页
The Mg-Gd-Y-Zn-Zr(GWZ)alloy containing a long-period ordered stacking(LPSO)phase fabricated by Wire arc additive manufacturing(WAAM)shows substantial potential in the aerospace and automotive industries.In this work,M... The Mg-Gd-Y-Zn-Zr(GWZ)alloy containing a long-period ordered stacking(LPSO)phase fabricated by Wire arc additive manufacturing(WAAM)shows substantial potential in the aerospace and automotive industries.In this work,Mg-9Gd-4Y-1Zn-0.4Zr(wt%)single-layer and multilayer components with high-forming-quality were fabricated using WAAM based on cold metal transfer(WAAM-CMT).The deposition parameters were optimized,achieving better deposition morphology and surface quality.The layer-by-layer cyclic microstructure includes remelting zone(RMZ)and non-remelting zone(NRZ),which consisted of α-Mg matrix,blocky LPSO phase,and eutectic phase.The average grain size were 26.8μm in RMZ and 39.3μm in NRZ,and the volume fraction of secondary phases was around 8%,remaining consistent across different layers.The coarse-fine-grain alternating structure generated hetero deformation induced(HDI)strengthening,while at the same time caused the fracture occurring between the NRZ and RMZ due to the weak interlayer bonding.The thermally stabilized blocky LPSO phase played an effective role on inhibiting grain growth during the solid-solution treatment.The specimen achieved highest isotropic mechanical properties after optimized heat treatment with yield strength,ultimate tensile strength,and elongation higher than 220 MPa,370 MPa,and 8.0%,respectively.The GWZ alloys fabricated by WAAM with great isotropic strength-ductility-synergy are promising candidates to replace the conventionally cast counterparts. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy(GWZ) wire arc additive manufacturing(WAAM) Cold metal transfer(CMT) Long-period ordered stacking(LPSO)phase
在线阅读 下载PDF
Formability,microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding 被引量:22
12
作者 Yangyang Guo Gaofeng Quan +3 位作者 Yinglong Jiang Lingbao Ren Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期192-201,共10页
Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructu... Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructural evolution and mechanical properties of the WAAM AZ80M Mg alloy were investigated.The results show that there was significant difference in the temperature variation and the geometries between the original several layers and the subsequent deposited layers.Owing to the arc energy input,the interpass temperature rised rapidly and then stabilized at 150℃.As a result,the width of the deposited wall increased and then kept stable.There were obvious differences in the microstructure of the WAAM AZ80M Mg alloy among the top zone,intermediate zone and bottom zone of deposited wall.During the arc deposition process,theβphase of the WAAM AZ80M Mg alloy redissolved due to the cyclic heat accumulation,and then precipitated in the grain boundary.The cyclic heat accumulation also led to weakening of dendrite segregation.From the substrate to the top zone,the hardness of the deposited wall decreased gradually,and the intermediate zone which was the main body of deposited wall had relatively uniform hardness.The tensile properties of the WAAM AZ80M Mg alloy were different between the vertical direction and the horizontal direction.And the maximum ultimate tensile strength of the WAAM AZ80M Mg alloy was 308 MPa which was close to that of the as-extruded AZ80M Mg alloy. 展开更多
关键词 wire arc additive manufacturing Magnesium alloy Thermal cycles Microstructure Mechanical properties
在线阅读 下载PDF
Microstructure and mechanical properties of TA15/TC11 graded structural material by wire arc additive manufacturing process 被引量:13
13
作者 He WANG Shu-yuan MA +2 位作者 Jia-chen WANG Tao LU Chang-meng LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2323-2335,共13页
A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical prope... A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical properties of the as-deposited GSM were all characterized to investigate their variations along the deposition direction.The results indicate that from TA15 to TC11,the grain size decreases and a transition from columnar grains to equiaxed grains occurs.The content of alloy element alters greatly within a short distance,and the width of the mutation zone is 800μm.Both TA15 and TC11 regions exhibit basketweave microstructure withα-phase andβ-phase.However,during the transition from TA15 to TC11,theα-lath becomes fine,which leads to an increase in microhardness.The tensile test shows that the bonding strength at the interface is higher than the longitudinal strength of TA15,and the lateral elongation at the interface is higher than that of TA15 and TC11. 展开更多
关键词 wire arc additive manufacturing graded structural material grain morphology microstructure mechanical properties
在线阅读 下载PDF
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits 被引量:13
14
作者 Hao Zhong Bojin Qi +2 位作者 Baoqiang Cong Zewu Qi Hongye Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期174-180,共7页
Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive ... Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive manufacturing(WAAM) process. To identify its feasibility in WAAM procewire was produced and employed in the production of straight-walled components, using a WAAM system based on variable polarity gas tungsten arc welding(VP-GTAW) process. The influence of post-deposited heat treatment on the microstructure and property of the deposit was investigated using optical micrographs(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), hardness and tensile properties tests. Results revealed that the microstructures of AA2050 aluminum deposits varied with their location layers. The upper layers consisted of fine equiaxed grains, while the bottom layer exhibited a coarse columnar structure. Mechanical properties witnessed a significant improvement after post-deposited heat treatment, with the average micro-hardness reaching 141 HV and the ultimate tensile strength exceeding 400 MPa. Fracture morphology exhibited a typical ductile fracture. 展开更多
关键词 Aluminum-copper-lithium alloy wire arc additive manufacturing Heat treatment Mechanical properties
在线阅读 下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:15
15
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 wire arc additive manufacturing AZ80M magnesium alloy Heat treatment MICROSTRUCTURE Mechanical properties
在线阅读 下载PDF
Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys 被引量:9
16
作者 Tianxing Chang Xuewei Fang +2 位作者 Gang Liu Hongkai Zhang Ke Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第29期65-75,共11页
Aluminum alloy is the most widely used light alloy at present.By combining different types of aluminum alloys,their functional properties can be expanded.In the present research,two components composed of 2319(Al-6.5C... Aluminum alloy is the most widely used light alloy at present.By combining different types of aluminum alloys,their functional properties can be expanded.In the present research,two components composed of 2319(Al-6.5Cu)and 5B06(Al-6.4Mg)dissimilar alloys were fabricated by wire and arc additive manufacturing(WAAM).The deposited component with the bottom half of 2319 and the top half of 5B06 exhibits better mechanical properties than its counterpart deposited vice versa.Its ultimate tensile strength,yield strength,and elongation are 258.5 MPa,139.3 MPa,and 5.6%,respectively,which are only slightly inferior to the mechanical properties of 2319 base metal.The results show that for both components,fracture occurred at a layer thickness above the interface layer during the tensile test,regardless of the deposition order.It appears that the thermal stress due to the long dwell time and the remelting of the S-AlCu Mg phase are the main factors promoting crack initiation.Depending on the deposition order,cracks propagate either along the aggregated pores or stripθ-AlCu phase distributed along the grain boundary.By analyzing the heat input and selecting the appropriate depositing order,the strength of WAAM dissimilar aluminum alloys can be effectively improved through the proper control of microstructure and internal defects. 展开更多
关键词 wire and arc additive manufacturing Dissimilar materials DEFECTS Microstructure Mechanical Properties Aluminum alloy
原文传递
Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al-Cu alloy 被引量:9
17
作者 Ming-ye DONG Yue ZHAO +2 位作者 Quan LI Fu-de WANG Ai-ping WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期750-764,共15页
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert... Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures. 展开更多
关键词 CD welding wire wire and arc additive manufacturing Al-Cu alloy
在线阅读 下载PDF
Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy 被引量:7
18
作者 Bintao Wu Zhijun Qiu +5 位作者 Zengxi Pan Kristin Carpenter Tong Wang Donghong Ding Stephen Van Duin Huijun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第17期226-234,共9页
Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex... Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification.Here,wire arc additive manufacturing(WAAM)process was used to fabricate a steel-nickel structural component,whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials(steel,537 MPa and nickel,455 MPa),which has not been reported previously.The as-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy.The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength,beyond the sum of parts.The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components,with site-specific properties,for specific structural or functional applications. 展开更多
关键词 wire arc additive manufacturing(WAAM) Steel-nickel bimetallic-component Interweaving deposition Material properties
原文传递
Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method 被引量:6
19
作者 Zhi-qiang Liu Pei-lei Zhang +2 位作者 Shao-wei Li Di Wu Zhi-shui Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期783-791,共9页
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer... Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area. 展开更多
关键词 wire arc additive manufacturing aluminum alloy cold metal transfer microstructure layer deposition
在线阅读 下载PDF
Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution 被引量:13
20
作者 Jianwei LI Youmin QIU +9 位作者 Junjie YANG Yinying SHENG Yanliang YI Xun ZENG Lianxi CHEN Fengliang YIN Jiangzhou SU Tiejun ZHANG Xin TONG Bin GUO 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期217-229,共13页
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac... Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively. 展开更多
关键词 AZ31 magnesium alloy wire and arc additive manufacturing(WAAM) Grain refinement Microstructure Intergranular corrosion
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部