With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have ev...With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source,multi-load systems.This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches-primarily focused on economic objectives-insufficient to meet the growing demands for flexible scheduling and dynamic response.To address these challenges,this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of distribution networks with a high penetration of new-type source-loads.The goal is to establish a comprehensive energy management framework that optimally balances energy efficiency,carbon reduction,and economic performance in modern distribution networks.To enhance classification accuracy,the strategy constructs amulti-dimensional scenario classification model that integrates environmental and climatic factors by analyzing the operational characteristics of new-type distribution networks and incorporating expert knowledge.An improved split-coupling K-means preclustering algorithm is employed to classify distribution networks effectively.Based on the classification results,fuzzy logic control is then utilized to dynamically optimize the weighting of each objective,allowing for an adaptive adjustment of priorities to achieve a flexible and responsivemulti-objective energy management strategy.The effectiveness of the proposed approach is validated through practical case studies.Simulation results indicate that the proposed method improves classification accuracy by 18.18%compared to traditional classification methods and enhances energy savings and carbon reduction by 4.34%and 20.94%,respectively,compared to the fixed-weight strategy.展开更多
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode...High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.展开更多
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar...Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.展开更多
Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate th...Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel.展开更多
The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are t...The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.展开更多
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement...Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity.展开更多
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite...This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.展开更多
A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visua...A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.展开更多
This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors a...This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.展开更多
According to the characteristics of sonar image data with big data feature, In order to accurately detect underwater objects of sonar image, a novel adaptive threshold FCM (Fuzzy Clustering Algorithm, FCM) based on fr...According to the characteristics of sonar image data with big data feature, In order to accurately detect underwater objects of sonar image, a novel adaptive threshold FCM (Fuzzy Clustering Algorithm, FCM) based on frequency domain and time domain is proposed. Based on the relationship between sonar image data and big data, Firstly, wavelet de-noising method is used to smooth noise. After de-noising, the sonar image is blocked and each sub-block region is processed by two-dimensional discrete Fourier transform, their maximum amplitude spectrum used as frequency domain character, then time domain of mean and standard deviation, frequency domain of maximum amplitude spectrum are taken for character to complete block k-means clustering, the initial clustering center is determined, after that made use of FCM on sonar image detection, based on clustered image, adaptive threshold is constructed by the distribution of sonar image sea-bottom reverberation region, and final detection results of sonar image are completed. The comparison different experiments demonstrate that the proposed algorithm get good detection precision and adaptability.展开更多
Purpose:Community detection of dynamic networks provides more effective information than static network community detection in the real world.The mainstream method for community detection in dynamic networks is evolut...Purpose:Community detection of dynamic networks provides more effective information than static network community detection in the real world.The mainstream method for community detection in dynamic networks is evolutionary clustering,which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals.However,the error accumulation issues limit the effectiveness of evolutionary clustering.While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework,the traditional multi-objective evolutionary approach lacks self-adaptability.Design/methodology/approach:This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods.In this approach,a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting.Findings:Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets.Originality/value:To enhance the clustering results,adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D(A Multiobjective Optimization Evolutionary Algorithm based on Decomposition)to dynamically adjust the focus of different evolutionary stages.展开更多
To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this ...To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.展开更多
The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. How...The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. However, current single GPU based engineering solutions are often struggling to fulfill their real-time requirements. Thus, the multi-GPU-based approach has become a popular and cost-effective choice for tackling the demands. In those cases, the computational load balancing over multiple GPU "nodes" is often the key and bottleneck that affect the quality and performance of the real=time system. The existing load balancing approaches are mainly based on the assumption that all GPU nodes in the same computer framework are of equal computational performance, which is often not the case due to cluster design and other legacy issues. This paper presents a novel dynamic load balancing (DLB) model for rapid data division and allocation on heterogeneous GPU nodes based on an innovative fuzzy neural network (FNN). In this research, a 5-state parameter feedback mechanism defining the overall cluster and node performance is proposed. The corresponding FNN-based DLB model will be capable of monitoring and predicting individual node performance under different workload scenarios. A real=time adaptive scheduler has been devised to reorganize the data inputs to each node when necessary to maintain their runtime computational performance. The devised model has been implemented on two dimensional (2D) discrete wavelet transform (DWT) applications for evaluation. Experiment results show that this DLB model enables a high computational throughput while ensuring real=time and precision requirements from complex computational tasks.展开更多
This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex ...This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split the entire input space into operating domains, and a recently developed feature-based model combination method is applied to build local models for each region. To realize this idea, three steps are required, which include clustering, local modeling and model combination, governed by a single objective function. An adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating regimes, local feature models are created in each individual region by applying a recently developed fea-ture-based model combination method, and finally they are combined into a single mixture model. Corre-spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local feature models turns out to be superior to global models.展开更多
基金supported by the Science and Technology Project of the Headquarters of the State Grid Corporation(project code:5400-202323233A-1-1-ZN).
文摘With the increasing integration of emerging source-load types such as distributed photovoltaics,electric vehicles,and energy storage into distribution networks,the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source,multi-load systems.This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches-primarily focused on economic objectives-insufficient to meet the growing demands for flexible scheduling and dynamic response.To address these challenges,this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of distribution networks with a high penetration of new-type source-loads.The goal is to establish a comprehensive energy management framework that optimally balances energy efficiency,carbon reduction,and economic performance in modern distribution networks.To enhance classification accuracy,the strategy constructs amulti-dimensional scenario classification model that integrates environmental and climatic factors by analyzing the operational characteristics of new-type distribution networks and incorporating expert knowledge.An improved split-coupling K-means preclustering algorithm is employed to classify distribution networks effectively.Based on the classification results,fuzzy logic control is then utilized to dynamically optimize the weighting of each objective,allowing for an adaptive adjustment of priorities to achieve a flexible and responsivemulti-objective energy management strategy.The effectiveness of the proposed approach is validated through practical case studies.Simulation results indicate that the proposed method improves classification accuracy by 18.18%compared to traditional classification methods and enhances energy savings and carbon reduction by 4.34%and 20.94%,respectively,compared to the fixed-weight strategy.
基金supported by National Natural Science Foundation of China (Grant Nos. 50875024,51105040)Excellent Young Scholars Research Fund of Beijing Institute of Technology,China (Grant No.2010Y0102)Defense Creative Research Group Foundation of China(Grant No. GFTD0803)
文摘High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.
基金supported by the Natural Science Foundation of China under contact(61233007)
文摘Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.
基金partly supported by National Natural Science Foundation of China (No. 61371113, 61371112)
文摘Based on the service characteristics and the sensing ability for secondary users, a joint optimization scheme of spectrum detection and allocation is investigated to expand the available sensing region and allocate the Qo S-specified channels. On the aspect of spectrum detection, due to the available detection index with the global detection metrics, cooperation thresholds are adaptively adjusted to select the cooperative model for maximizing the available sensing region. On the aspect of spectrum allocation, for different service category, the idle channels are efficiently allocated that depend on their stability and available bandwidth. Meanwhile, based on the requested rates defined by fuzzy theory, the secondary users can be divided into two categories, i.e.,delay sensitive service and reliability sensitive service. Finally, the Qo S-specified channels from the targeted spectrum subset are allocated to secondary users. Simulation results show that our proposed algorithm can not only expand the available sensing region,but also decrease the outage probability of delay sensitive services. Additionally, it enables stable power consumption in the time-variation channel.
文摘The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.
基金support of China University of Geosciences (Wuhan)
文摘Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity.
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
基金Science and Researching Foundation of Jiamusi University(L2006-12)
文摘This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.
基金Supported by the National Natural Science Foundation ofChina (10571127) the Doctoral Foundation of the Ministry of Educationof China (20040610004)
文摘A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.
文摘This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method.
基金This work was supported by the National Natural Science Foundation of China (41306086), technology innovation talent special foundation of Harbin (2014RFQXJ105) and Fundamental Research Funds for the Central Universities (No.HEUCFR1121, HEUCF100606).
文摘According to the characteristics of sonar image data with big data feature, In order to accurately detect underwater objects of sonar image, a novel adaptive threshold FCM (Fuzzy Clustering Algorithm, FCM) based on frequency domain and time domain is proposed. Based on the relationship between sonar image data and big data, Firstly, wavelet de-noising method is used to smooth noise. After de-noising, the sonar image is blocked and each sub-block region is processed by two-dimensional discrete Fourier transform, their maximum amplitude spectrum used as frequency domain character, then time domain of mean and standard deviation, frequency domain of maximum amplitude spectrum are taken for character to complete block k-means clustering, the initial clustering center is determined, after that made use of FCM on sonar image detection, based on clustered image, adaptive threshold is constructed by the distribution of sonar image sea-bottom reverberation region, and final detection results of sonar image are completed. The comparison different experiments demonstrate that the proposed algorithm get good detection precision and adaptability.
基金supported by the Key Project of Science and Technology Innovation(2030)supported by the Ministry of Science and Technology of China(Grant No.2018AAA0101301)the Key Research Platforms and Projects of High School in Guangdong Province(No.2023ZDZX1028,2023ZDZX1050)+1 种基金Dongguan Social Development Science and Technology Project(No.20211800904722)Dongguan Science and Technology Special Commissioner Project(No.2021180050007).
文摘Purpose:Community detection of dynamic networks provides more effective information than static network community detection in the real world.The mainstream method for community detection in dynamic networks is evolutionary clustering,which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals.However,the error accumulation issues limit the effectiveness of evolutionary clustering.While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework,the traditional multi-objective evolutionary approach lacks self-adaptability.Design/methodology/approach:This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods.In this approach,a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting.Findings:Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets.Originality/value:To enhance the clustering results,adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D(A Multiobjective Optimization Evolutionary Algorithm based on Decomposition)to dynamically adjust the focus of different evolutionary stages.
基金This work is funded by Hung Yen University of Technology and Education and Industrial University of Ho Chi Minh City.
文摘To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.
基金supported by National Natural Science Foundation of China(No.61203172)the SSTP of Sichuan(Nos.2018YYJC0994 and 2017JY0011)Shenzhen STPP(No.GJHZ20160301164521358)
文摘The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention from researchers and engineers who have been conducting high computational throughput studies. However, current single GPU based engineering solutions are often struggling to fulfill their real-time requirements. Thus, the multi-GPU-based approach has become a popular and cost-effective choice for tackling the demands. In those cases, the computational load balancing over multiple GPU "nodes" is often the key and bottleneck that affect the quality and performance of the real=time system. The existing load balancing approaches are mainly based on the assumption that all GPU nodes in the same computer framework are of equal computational performance, which is often not the case due to cluster design and other legacy issues. This paper presents a novel dynamic load balancing (DLB) model for rapid data division and allocation on heterogeneous GPU nodes based on an innovative fuzzy neural network (FNN). In this research, a 5-state parameter feedback mechanism defining the overall cluster and node performance is proposed. The corresponding FNN-based DLB model will be capable of monitoring and predicting individual node performance under different workload scenarios. A real=time adaptive scheduler has been devised to reorganize the data inputs to each node when necessary to maintain their runtime computational performance. The devised model has been implemented on two dimensional (2D) discrete wavelet transform (DWT) applications for evaluation. Experiment results show that this DLB model enables a high computational throughput while ensuring real=time and precision requirements from complex computational tasks.
文摘This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split the entire input space into operating domains, and a recently developed feature-based model combination method is applied to build local models for each region. To realize this idea, three steps are required, which include clustering, local modeling and model combination, governed by a single objective function. An adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating regimes, local feature models are created in each individual region by applying a recently developed fea-ture-based model combination method, and finally they are combined into a single mixture model. Corre-spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local feature models turns out to be superior to global models.