An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method an...An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.展开更多
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi...This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.展开更多
该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限...该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。展开更多
本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的...本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的反思发现,前文的思想精华还有发扬空间:既然单元“固端解”是有限元误差的主要来源,就可以用EEP公式简便地事先求出来,从而可以不经有限元计算而一举得到所需的网格划分。本文简要介绍这一最新方法的思路和机理,并给出初步的数值结果。展开更多
文摘An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
文摘This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments.
文摘该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。
文摘本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的反思发现,前文的思想精华还有发扬空间:既然单元“固端解”是有限元误差的主要来源,就可以用EEP公式简便地事先求出来,从而可以不经有限元计算而一举得到所需的网格划分。本文简要介绍这一最新方法的思路和机理,并给出初步的数值结果。
文摘首先导出了广义S tokes方程Petrov-G a lerk in有限元数值解的当地事后误差估算公式;以非连续二阶鼓包(bum p)函数空间为速度、压强误差的近似空间,该估算基于求解当地单元上的广义S tokes问题。然后,证明了误差估算值与精确误差之间的等价性。最后,将误差估算方法应用于N av ier-S tokes环境,以进行不可压粘流计算中的网格自适应处理。数值实验中成功地捕获了多强度物理现象,验证了本文所发展的方法。