On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t...On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.展开更多
This paper deals with realizable adaptive algorithms of the nonlinear approximation with finite terms based on wavelets. We present a concrete algorithm by which we may find the required index set Am for the greedy al...This paper deals with realizable adaptive algorithms of the nonlinear approximation with finite terms based on wavelets. We present a concrete algorithm by which we may find the required index set Am for the greedy algorithm Gm^P(., Ψ). This makes the greedy algorithm realize the near best approximation in practice. Moreover, we study the efficiency of the finite-term approximation of another Mgorithm introduced by Birge and Massart.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ...This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.展开更多
The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in...The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ...Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut...Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect.展开更多
A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in s...A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.展开更多
The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are...The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.展开更多
In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the ...In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.展开更多
An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the...An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the interest. The adaptation flow solution is proposed,including the detection of flow features based on the matrix error; the mesh adaptation using the mesh movement,the mesh refinement,the mesh coarsening,and their combination. The feature detection based on the matrix error can maintain the high resolution property for shock waves of the one-dimensional approximate Riemann solver and the higher order reconstruction scheme. The high grid efficiency is obtained with the anisotropically directional grid corresponding to feature directions,and the error of the flow-field is averaged. The procedure and its application to flow solutions of shock waves are described. Results validate that the method is reliable.展开更多
Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy d...Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.展开更多
Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. T...Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. This article describes a two-pass algorithm for accelerating the method on the graphic processing unit(GPU). On the first pass, the intersections with the isosurface are found only for a small number of rays, which is done by rendering into a lower-resolution texture. On the second pass, the obtained information is used to efficiently calculate the intersection points of all the other. The number of rays to use during the first pass is determined by using an adaptive algorithm, which runs on the central processing unit(CPU) in parallel with the second pass of the rendering. The proposed approach allows to significantly speed up isosurface visualization without quality loss. Experiments show acceleration up to 10 times in comparison with a common ray casting method implemented on GPU. To the authors’ knowledge, this is the fastest approach for ray casting which does not require any preprocessing and could be run on common GPUs.展开更多
文摘On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.
基金the foundation under the program of"One Hundred Outstanding Young Chinese Scientists"of the Chinese Academy of Sciencesthe Graduate Innovation Foundation of the Chinese Academy of Sciences
文摘This paper deals with realizable adaptive algorithms of the nonlinear approximation with finite terms based on wavelets. We present a concrete algorithm by which we may find the required index set Am for the greedy algorithm Gm^P(., Ψ). This makes the greedy algorithm realize the near best approximation in practice. Moreover, we study the efficiency of the finite-term approximation of another Mgorithm introduced by Birge and Massart.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
基金supported by the National Natural Science Foundation of China(61172159)
文摘This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金supported by the Shan⁃dong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金Supported by National Key R&D Program of China(Grant No.2022YFB3404101)National Natural Science Foundation of China(Grant Nos.52375018,92148301)。
文摘Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
基金supported by Program for New Century Excellent Talents in University of China (No.NCET-120030)National Natural Science Foundation of China (No.91438116)
文摘Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect.
基金supported by the Aerospace Science and Technology Innovation Foundation of China(CAST2014CH01)the Aeronautical Science Foundation of China(2015ZC560007)+1 种基金the Jiangxi Natural Science Foundation of China(20151BBE50026)National Natural Science Foundation of China(11462015)
文摘A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.
文摘The problem of robust stabilization for nonlinear systems with partially known uncertainties is considered in this paper. The required information about uncertainties in the system is merely that the uncertainties are bounded, but the upper bounds are incompletely known. This paper can be viewed as an extension of the work in reference [1]. To compensate the uncertainties, an adaptive robust controller based on Lyapunov method is proposed and the design algorithm is also suggested. Compared with some previous controllers which can only ensure ultimate uniform boundedness of the systems, the controller given in the paper can make sure that the obtained closed-loop system is asymptotically stable in the large. Simulations show that the method presented is available and effective.
文摘In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.
文摘An adaptive method for the solution of compressible flows is described. The idea results from the desire for an efficient grid system,and an accurate and robust solution method are used to resolve flow features of the interest. The adaptation flow solution is proposed,including the detection of flow features based on the matrix error; the mesh adaptation using the mesh movement,the mesh refinement,the mesh coarsening,and their combination. The feature detection based on the matrix error can maintain the high resolution property for shock waves of the one-dimensional approximate Riemann solver and the higher order reconstruction scheme. The high grid efficiency is obtained with the anisotropically directional grid corresponding to feature directions,and the error of the flow-field is averaged. The procedure and its application to flow solutions of shock waves are described. Results validate that the method is reliable.
文摘Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.
文摘Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. This article describes a two-pass algorithm for accelerating the method on the graphic processing unit(GPU). On the first pass, the intersections with the isosurface are found only for a small number of rays, which is done by rendering into a lower-resolution texture. On the second pass, the obtained information is used to efficiently calculate the intersection points of all the other. The number of rays to use during the first pass is determined by using an adaptive algorithm, which runs on the central processing unit(CPU) in parallel with the second pass of the rendering. The proposed approach allows to significantly speed up isosurface visualization without quality loss. Experiments show acceleration up to 10 times in comparison with a common ray casting method implemented on GPU. To the authors’ knowledge, this is the fastest approach for ray casting which does not require any preprocessing and could be run on common GPUs.