期刊文献+
共找到1,096篇文章
< 1 2 55 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
2
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
3
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR OPTIMAL Structure adaptive CONTROLLER GENETIC algorithm NEURAL Networks particle swarm optimization
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
4
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm CHAOTIC SEQUENCES SELF-adaptive STRATEGY MULTI-OBJECTIVE optimization
在线阅读 下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
5
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
6
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
Improved particle swarm optimization algorithm for multi-reservoir system operation 被引量:2
7
作者 Jun ZHANG Zhen WU +1 位作者 Chun-tian CHENG Shi-qin ZHANG 《Water Science and Engineering》 EI CAS 2011年第1期61-73,共13页
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati... In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm. 展开更多
关键词 particle swarm optimization self-adaptive exponential inertia weight coefficient multi-reservoir system operation hydroelectric power generation Minjiang Basin
在线阅读 下载PDF
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
8
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-adaptive CO-EVOLUTION
在线阅读 下载PDF
基于AWPSO-GRU算法的盾构掘进姿态预测方法:以上海市域铁路机场联络线为例
9
作者 朱美恒 陈兆庚 +2 位作者 张冬梅 高俊华 黄忠凯 《科学技术与工程》 北大核心 2025年第14期6062-6071,共10页
为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive we... 为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive weight particle swarm optimization,AWPSO)算法;然后结合门控循环单元(gated recurrent unit,GRU)神经网络构建盾构姿态预测模型,其中AWPSO算法用于确定GRU神经网络中的最优超参数组合;最后结合上海轨道交通市域线机场联络线张江站-度假区站区间现场监测数据进行了案例验证。结果表明,基于AWPSO-GRU的盾构掘进姿态预测模型具有较高的可靠性和工程实用性,可为盾构掘进过程中施工参数的设定提供参考和依据。 展开更多
关键词 盾构隧道 粒子群优化 自适应惯性权重 门控循环单元 姿态预测
在线阅读 下载PDF
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
10
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 Maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
在线阅读 下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
11
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
在线阅读 下载PDF
Investigation of notch effect in the optimum weight design of steel truss towers via Particle Swarm Optimization and Firefly Algorithm
12
作者 Elif YILMAZ Musa ARTAR Mustafa ERGÜN 《Frontiers of Structural and Civil Engineering》 2025年第3期358-377,共20页
In this study, the optimal weight designs of steel truss towers are determined, considering the notch effect. Thus, the impact of discontinuities in the cross-sections of steel elements on the total weight of the stru... In this study, the optimal weight designs of steel truss towers are determined, considering the notch effect. Thus, the impact of discontinuities in the cross-sections of steel elements on the total weight of the structure is revealed. For this purpose, the optimal weight designs of different truss towers analyzed by other researchers in previous years are reexamined using Particle Swarm Optimization and Firefly Algorithm. The main program where finite element analyses and optimization algorithms are encoded has been developed in MATLAB. Displacement, stress, geometric, and section height constraints are used in optimization methods. The effectiveness of these methods has been demonstrated by comparing both the results in the literature and with each other under un-notched conditions. Subsequently, considering the notch effect on the tension bar with the highest stress capacity in each structure, the impact of stress concentration on the minimum weight sizing of the structure is investigated using these proven methods. When the analysis results of both cases are examined, it is observed that the optimum weights of all structures under the notch effect have slightly increased. The stress concentration around the notch severely raises the nominal stress in the cross-section. In this case, the cross-section becomes insufficient due to the overcapacity, requiring larger profiles. The structure’s weight shows an increasing trend depending on the number of notched elements and the severity of stress concentration. Additionally, SAP2000 software is utilized for numerical simulations of the structures under identical conditions, enhancing the research content and providing further support for the comprehensive design optimization analyses. Consequently, minimizing the adverse effects of notches through careful material selection, proper manufacturing and assembly techniques, and regular maintenance is essential. The effects of notches should be considered in structural analysis and design, with measures taken to mitigate these effects when necessary. 展开更多
关键词 steel truss towers optimum weight design notch effect particle swarm optimization firefly algorithm
原文传递
Enhancement in Channel Equalization Using Particle Swarm Optimization Techniques
13
作者 D. C. Diana S. P. Joy Vasantha Rani 《Circuits and Systems》 2016年第12期4071-4084,共15页
This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities o... This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions. 展开更多
关键词 adaptive Channel Equalization Decision Feedback Equalizer Inertia Weight Mean Square Error particle swarm optimization
在线阅读 下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
14
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
15
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
原文传递
考虑碳排放的铁路路基施工机群配置优化 被引量:1
16
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
原文传递
自适应混合粒子群优化DMC及其在脱硫系统中的应用
17
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于CPSO改进的TOPSIS三维空间组合定权投影动态综合评价研究
18
作者 张侃 刘思施 +2 位作者 魏华 余鹏 梁新 《中国管理科学》 北大核心 2025年第7期117-127,共11页
针对同时考虑时间维、对象维和指标维的三维动态评价问题,指出传统TOPSIS(technique for order preference by similarity)方法的应用弊端,提出了一种扩展TOPSIS理论下的三维空间组合定权投影模型,阐明其投影降维原理与算法实现。在此... 针对同时考虑时间维、对象维和指标维的三维动态评价问题,指出传统TOPSIS(technique for order preference by similarity)方法的应用弊端,提出了一种扩展TOPSIS理论下的三维空间组合定权投影模型,阐明其投影降维原理与算法实现。在此基础上,引入指标维存在非线性映射关系的普适性假设和混沌系统设计思想,分别选择ANP(the analytic network process)结构模型和CPSO(chaos particle swarm optimization)寻优算法来确定指标体系的对象维与时间维权重,测算出最终的三维空间组合权重与评价排序结果。实证研究结果表明,本文提出的动态综合评价模型能够较好地解决三维空间组合定权问题,与PSO(particle swarm optimization)、EGA(elite genetic algorithm)等算法相比,CPSO具有权值全局寻优、搜索速度快、定权方法简便的优点,综合评价结论具有较强的可信度。 展开更多
关键词 三维空间组合定权 混沌粒子群 理想算法 投影算法 网络层次分析
原文传递
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
19
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
基于改进粒子群优化算法的柔性车间作业调度研究
20
作者 屈新怀 万之栩 +1 位作者 丁必荣 孟冠军 《机电工程技术》 2025年第10期17-21,99,共6页
针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,... 针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,引入了自适应惯性权重的方法,使粒子在迭代过程中更好地搜索最优解。此外,还加入了交叉搜索步骤,以增加算法的多样性和全局搜索能力,促使粒子跳出局部最优解,探索全局最优解。通过与标准粒子群优化算法和自适应遗传算法,改进PSO算法在不同实例上展现出优越的性能,特别是在处理小规模问题实例时,性能优势更为明显。实验结果表明,改进的粒子群优化算法在最小化最大完工时间方面表现更优,且在算法的收敛速度和寻优能力上也具有明显优势。证明了改进PSO算法是解决FJSP问题的一个有效和可靠的方法。该研究对于提高柔性作业车间调度问题的解决质量和加工调度效率具有重要意义,对智能制造业具有实际应用价值。 展开更多
关键词 车间作业调度 柔性车间 粒子群优化算法 自适应惯性权重 交叉搜索
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部