An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula...The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.展开更多
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se...To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.展开更多
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for th...As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020.展开更多
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d...The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.展开更多
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ...In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.展开更多
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant...The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.展开更多
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS...In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete t...Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.展开更多
For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These proble...For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion.展开更多
Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in l...Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in large-scale Wireless Sensor Networks(WSN)is one of the most difficult areas of study.As every sensor node has afinite amount of energy.Battery power is the most significant source in the WSN.Clustering is a well-known technique for enhan-cing the power feature in WSN.In the proposed method multi-Swarm optimiza-tion based on a Genetic Algorithm and Adaptive Hierarchical clustering-based routing protocol are used for enhancing the network’s lifespan and routing opti-mization.By using distributed data transmission modification,an adaptive hier-archical clustering-based routing algorithm for power consumption is presented to ensure continuous coverage of the entire area.To begin,a hierarchical cluster-ing-based routing protocol is presented in terms of balancing node energy con-sumption.The Multi-Swarm optimization(MSO)based Genetic Algorithms are proposed to select an efficient Cluster Head(CH).It also improves the network’s longevity and optimizes the routing.As a result of the study’sfindings,the pro-posed MSO-Genetic Algorithm with Hill climbing(GAHC)is effective,as it increases the number of clusters created,average energy expended,lifespan com-putation reduces average packet loss,and end-to-end delay.展开更多
Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applicat...Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes.展开更多
Dear Editor,This letter is concerned with the problem of stable high-quality signal transmission of unmanned aerial vehicle(UAV)-assisted multiple-input multiple-output(MIMO)communication system.The particle swarm opt...Dear Editor,This letter is concerned with the problem of stable high-quality signal transmission of unmanned aerial vehicle(UAV)-assisted multiple-input multiple-output(MIMO)communication system.The particle swarm optimization(PSO)algorithm is used to achieve optimal beamforming and power allocation for this system.Additionally,sensitive particle(SP)and parameter adaptive adjustment are introduced into the traditional PSO algorithm,aiming to improve the performance of the PSO algorithm in dynamic environments with real-time changes in the UAV position.A reinforcement learning(RL)-based approach is proposed to obtain optimal UAV trajectory and adaptive adjustment strategy for PSO parameters,which combine with a specific obstacle avoidance scheme to achieve accurate UAV navigation while satisfying high-quality signal transmission.Simulation experiments show that our scheme provides higher and more stable spectral efficiency as well as more efficient UAV navigation than the currently commonly used scheme with a single RL approach.展开更多
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
文摘The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
文摘To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.
文摘As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020.
文摘The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.
文摘In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.
文摘The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models.
基金National Natural Science Foundation of China,Grant No.52375264.
文摘In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
基金supported by University of Science and Technology Liaoning,National Financial Security and System Equipment Engineering Research Center(No.USTLKFGJ201502)
文摘Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.
基金supported by the National Natural Science Foundation of China(NSFC)[grant number 41374133]
文摘For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion.
文摘Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in large-scale Wireless Sensor Networks(WSN)is one of the most difficult areas of study.As every sensor node has afinite amount of energy.Battery power is the most significant source in the WSN.Clustering is a well-known technique for enhan-cing the power feature in WSN.In the proposed method multi-Swarm optimiza-tion based on a Genetic Algorithm and Adaptive Hierarchical clustering-based routing protocol are used for enhancing the network’s lifespan and routing opti-mization.By using distributed data transmission modification,an adaptive hier-archical clustering-based routing algorithm for power consumption is presented to ensure continuous coverage of the entire area.To begin,a hierarchical cluster-ing-based routing protocol is presented in terms of balancing node energy con-sumption.The Multi-Swarm optimization(MSO)based Genetic Algorithms are proposed to select an efficient Cluster Head(CH).It also improves the network’s longevity and optimizes the routing.As a result of the study’sfindings,the pro-posed MSO-Genetic Algorithm with Hill climbing(GAHC)is effective,as it increases the number of clusters created,average energy expended,lifespan com-putation reduces average packet loss,and end-to-end delay.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)and the Soonchunhyang University Research Fund.
文摘Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes.
基金supported by the National Natural Science Foundation of China(62173251,62203113the“Zhishan”Scholars Programs of Southeast University,and the Fundamental Research Funds for the Central Universities(2242023K30034).
文摘Dear Editor,This letter is concerned with the problem of stable high-quality signal transmission of unmanned aerial vehicle(UAV)-assisted multiple-input multiple-output(MIMO)communication system.The particle swarm optimization(PSO)algorithm is used to achieve optimal beamforming and power allocation for this system.Additionally,sensitive particle(SP)and parameter adaptive adjustment are introduced into the traditional PSO algorithm,aiming to improve the performance of the PSO algorithm in dynamic environments with real-time changes in the UAV position.A reinforcement learning(RL)-based approach is proposed to obtain optimal UAV trajectory and adaptive adjustment strategy for PSO parameters,which combine with a specific obstacle avoidance scheme to achieve accurate UAV navigation while satisfying high-quality signal transmission.Simulation experiments show that our scheme provides higher and more stable spectral efficiency as well as more efficient UAV navigation than the currently commonly used scheme with a single RL approach.