期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
1
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
在线阅读 下载PDF
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:4
2
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production optimization efficiency Streamline simulation Streamline feature Objective function Bayesian adaptive direct search algorithm
原文传递
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:2
3
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
在线阅读 下载PDF
A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems 被引量:13
4
作者 Andi Tang Huan Zhou +1 位作者 Tong Han Lei Xie 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期331-364,共34页
The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe... The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms. 展开更多
关键词 Sparrow search algorithm global optimization adaptive step benchmark function chaos map
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
5
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-adaptive numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
6
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 Heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search
7
作者 Yaren Aydın Gebrail Bekdas +1 位作者 Sinan Melih Nigdeli Zong Woo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2471-2499,共29页
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ... Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems. 展开更多
关键词 Passive control optimum design parameter optimization tuned mass damper inerter time domain adaptive harmony search algorithm
在线阅读 下载PDF
Feedback Mechanism-driven Mutation Reptile Search Algorithm for Optimizing Interpolation Developable Surfaces
8
作者 Gang Hu Jiao Wang +1 位作者 Xiaoni Zhu Muhammad Abbas 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期527-571,共45页
Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimizatio... Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem. 展开更多
关键词 Reptile search algorithm Feedback mechanism adaptive parameter Mutation strategy SGC-Ball interpolation developable surface Shape optimization
在线阅读 下载PDF
An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size
9
作者 Ala Kana Imtiaz Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第9期3443-3464,共22页
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int... A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications. 展开更多
关键词 optimization Runge Kutta(RUN) metaheuristic algorithm exploration EXPLOITATION population size adaptation adaptive search step size
在线阅读 下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
10
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 Arithmetic optimization algorithm adaptive Balance Factor Spiral search Brownian Motion Whale Fall Mechanism
在线阅读 下载PDF
An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty
11
作者 Manuel J.C.S.Reis 《Computers, Materials & Continua》 2025年第11期3023-3039,共17页
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ... The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments. 展开更多
关键词 Vehicle routing problem with time windows(VRPTW) hybrid metaheuristic genetic algorithm local search uncertainty modeling stochastic optimization adaptive algorithms combinatorial optimization transportation and logistics robust scheduling
在线阅读 下载PDF
基于改进非支配鲸鱼算法的双资源约束混合流水车间调度
12
作者 谢春林 王创剑 《组合机床与自动化加工技术》 北大核心 2026年第1期193-200,共8页
针对具有机器和工人两种资源约束的多目标混合流水调度问题(hybrid flow workshop scheduling,HFS),建立以最小化makspen、机器总能耗和工人总负载平衡的多目标优化数学模型。为此,提出一种基于非支配排序的多目标鲸鱼优化算法,首先引入... 针对具有机器和工人两种资源约束的多目标混合流水调度问题(hybrid flow workshop scheduling,HFS),建立以最小化makspen、机器总能耗和工人总负载平衡的多目标优化数学模型。为此,提出一种基于非支配排序的多目标鲸鱼优化算法,首先引入Tent混沌映射产生初始种群,其次利用非支配排序和引进拥挤距离来避免种群过早收敛;针对标准鲸鱼优化算法中固定的收敛因子导致的探索不均匀,提出一种自适应收敛因子策略,并设计基于自学习适应机制的变邻域搜索算法,设计5种局部搜索算子,根据自适应学习机制来合理选择算子,提升算法搜索质量和效率。最后,以某航空制造企业的实际案例生成测试案例进行仿真实验,实验结果表明与现有的多目标优化算法相比,所提的INSWOA算法具有优越性。 展开更多
关键词 双资源约束 非支配排序鲸鱼优化算法 混沌映射 自适应收敛因子 变邻域搜索
在线阅读 下载PDF
BAS-ADAM:An ADAM Based Approach to Improve the Performance of Beetle Antennae Search Optimizer 被引量:32
13
作者 Ameer Hamza Khan Xinwei Cao +2 位作者 Shuai Li Vasilios N.Katsikis Liefa Liao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期461-471,共11页
In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We ach... In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We achieve this by adaptively adjusting the step-size in each iteration using the adaptive moment estimation(ADAM)update rule.The proposed algorithm also increases the convergence rate in a narrow valley.A key feature of the ADAM update rule is the ability to adjust the step-size for each dimension separately instead of using the same step-size.Since ADAM is traditionally used with gradient-based optimization algorithms,therefore we first propose a gradient estimation model without the need to differentiate the objective function.Resultantly,it demonstrates excellent performance and fast convergence rate in searching for the optimum of noin-convex functions.The efficiency of the proposed algorithm was tested on three different benchmark problems,including the training of a high-dimensional neural network.The performance is compared with particle swarm optimizer(PSO)and the original BAS algorithm. 展开更多
关键词 adaptive moment estimation(ADAM) Beetle antennae search(BAM) gradient estimation metaheuristic optimization nature-inspired algorithms neural network
在线阅读 下载PDF
Current Search and Applications in Analog Filter Design Problems 被引量:1
14
作者 Deacha Puangdownreong Anusom Sakulin 《通讯和计算机(中英文版)》 2012年第9期1083-1096,共14页
关键词 模拟滤波器 搜索技术 滤波器设计 应用 启发式优化算法 组合优化问题 粒子群优化 人工智能
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:3
15
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
基于改进粒子群优化算法的柔性车间作业调度研究 被引量:1
16
作者 屈新怀 万之栩 +1 位作者 丁必荣 孟冠军 《机电工程技术》 2025年第10期17-21,99,共6页
针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,... 针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,引入了自适应惯性权重的方法,使粒子在迭代过程中更好地搜索最优解。此外,还加入了交叉搜索步骤,以增加算法的多样性和全局搜索能力,促使粒子跳出局部最优解,探索全局最优解。通过与标准粒子群优化算法和自适应遗传算法,改进PSO算法在不同实例上展现出优越的性能,特别是在处理小规模问题实例时,性能优势更为明显。实验结果表明,改进的粒子群优化算法在最小化最大完工时间方面表现更优,且在算法的收敛速度和寻优能力上也具有明显优势。证明了改进PSO算法是解决FJSP问题的一个有效和可靠的方法。该研究对于提高柔性作业车间调度问题的解决质量和加工调度效率具有重要意义,对智能制造业具有实际应用价值。 展开更多
关键词 车间作业调度 柔性车间 粒子群优化算法 自适应惯性权重 交叉搜索
在线阅读 下载PDF
基于车辆与无人机协同的巡检任务分配与路径规划算法
17
作者 李晓辉 刘小飞 +3 位作者 孙炜桐 赵毅 董媛 靳引利 《山东大学学报(工学版)》 北大核心 2025年第5期101-109,共9页
为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及... 为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及距离等因素,利用聚类算法对目标节点进行划分;第二阶段采用一种混合式启发算法解决路线调度问题,增加6种新的局部优化算子,引入节点重分配策略,经过迭代得到成本最小的车辆与无人机协同混合路线。对所提算法解和其他算法解进行测试和比较分析,试验数据表明,IALNS算法在解决车辆与无人机协同巡检问题时具有显著优势。 展开更多
关键词 路径规划 车辆与无人机协同模式 聚类算法 自适应大邻域搜索 局部优化
原文传递
自适应动态分级平衡优化器算法及收敛性
18
作者 刘景森 高赛男 +1 位作者 李煜 周欢 《浙江大学学报(工学版)》 北大核心 2025年第11期2389-2399,共11页
为了解决平衡优化器(EO)算法在处理复杂优化问题时易陷入局部极值、寻优精度有时不佳的问题,提出高效的自适应动态分级平衡优化器CGTEO,对其收敛性进行理论和实验分析.引入基于正余弦系数的自适应交叉更新机制,增强种群多样性.加入动态... 为了解决平衡优化器(EO)算法在处理复杂优化问题时易陷入局部极值、寻优精度有时不佳的问题,提出高效的自适应动态分级平衡优化器CGTEO,对其收敛性进行理论和实验分析.引入基于正余弦系数的自适应交叉更新机制,增强种群多样性.加入动态分级搜索策略,平衡各子种群对探索和开发能力的不同需求.融合基于三角形拓扑单元的精英邻域学习策略,改善收敛精度并有效避免局部极值.通过概率测度法,证明了CGTEO算法的全局收敛性.采用CEC2017测试集,对CGTEO与9种代表性对比算法进行全面测试与对比分析,结合寻优精度、收敛曲线、Wilcoxon秩和检验及小提琴图等多种方法评估优化结果.实验结果表明,CGTEO算法在优化精度、收敛性能和稳定性方面均表现出色.Wilcoxon秩和检验表明,该算法的优化结果在统计上显著优于其他对比算法. 展开更多
关键词 平衡优化器算法 自适应交叉更新 动态分级搜索 精英邻域学习 收敛性分析 Wilcoxon秩和检验
在线阅读 下载PDF
多策略增强的蜣螂优化算法及其工程应用 被引量:5
19
作者 吴亚中 陈璐 +1 位作者 马强 陈立正 《华中科技大学学报(自然科学版)》 北大核心 2025年第2期95-103,共9页
针对蜣螂优化算法易陷入局部极值、收敛速度慢等缺陷,提出了一种多策略增强的蜣螂优化算法.首先,创新地提出了基于最大最小欧式距离-Tent混沌映射种群初始化新方法,使初始种群均匀分布在解空间中,提升种群的多样性;进一步,引入黄金正弦... 针对蜣螂优化算法易陷入局部极值、收敛速度慢等缺陷,提出了一种多策略增强的蜣螂优化算法.首先,创新地提出了基于最大最小欧式距离-Tent混沌映射种群初始化新方法,使初始种群均匀分布在解空间中,提升种群的多样性;进一步,引入黄金正弦搜索策略平衡算法全局探索和局部开发能力;最后,设计基于自适应t分布策略对全局最优解进行扰动,提升算法摆脱局部最优解的能力.将所提算法与4种经典元启发式算法和2种先进的改进算法在10个基准测试函数上进行寻优性能对比,通过Wilcoxon秩和检验结果分析了显著性差异水平,结果表明所提算法在高维单峰测试函数上均优于其他6种算法,在多峰测试函数上表现突出.此外,将所提算法应用在2个典型工程优化设计中,优化效果均达到最佳值,进一步验证了其在解决实际工程问题时的优越性. 展开更多
关键词 蜣螂优化算法 Tent混沌映射 黄金正弦搜索 自适应t分布策略 工程优化设计
原文传递
需求不确定下卡车-无人机协同的路径优化研究 被引量:2
20
作者 陈兆芳 李文静 黄文翰 《铁道运输与经济》 北大核心 2025年第10期60-72,共13页
针对突发事件发生后,部分受灾点的应急物资需求呈现波动性,为提高应急物资配送效率,对需求不确定下的卡车-无人机协同的路径优化问题进行研究。首先,引入需求不确定水平参数,建立卡车与无人机协同配送的鲁棒路径优化模型;其次,提出一种... 针对突发事件发生后,部分受灾点的应急物资需求呈现波动性,为提高应急物资配送效率,对需求不确定下的卡车-无人机协同的路径优化问题进行研究。首先,引入需求不确定水平参数,建立卡车与无人机协同配送的鲁棒路径优化模型;其次,提出一种改进的自适应大规模邻域搜索算法(IALNS),通过设计多样化的删除与修复算子以增强解的多样性,同时通过模拟退火过程更新解,保证解的收敛性;然后,利用Solomon算例验证算法的有效性,并与传统的遗传算法(GA)和粒子群算法(PSO)进行比较,GA、PSO与IALNS算法的平均GAP分别为15.18%,12.91%,验证了算法的可靠性;最后,对需求不确定水平参数、无人机载重以及续航里程进行灵敏度分析。实验结果表明,鲁棒优化模型和IALNS算法可以保证受灾点在需求波动下卡车-无人机路径的可行性。 展开更多
关键词 路径优化 卡车-无人机协同 需求不确定 自适应大规模邻域搜索算法
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部