Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance o...In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance of two advanced models,the Large Language Model(LLM)LLaMA model and NLP BERT model,in the context of airline review sentiment analysis.Through fine-tuning,domain adaptation,and the application of few-shot learning,the study addresses the subtleties of sentiment expressions in airline-related text data.Employing predictive modeling and comparative analysis,the research evaluates the effectiveness of Large Language Model Meta AI(LLaMA)and Bidirectional Encoder Representations from Transformers(BERT)in capturing sentiment intricacies.Fine-tuning,including domain adaptation,enhances the models'performance in sentiment classification tasks.Additionally,the study explores the potential of few-shot learning to improve model generalization using minimal annotated data for targeted sentiment analysis.By conducting experiments on a diverse airline review dataset,the research quantifies the impact of fine-tuning,domain adaptation,and few-shot learning on model performance,providing valuable insights for industries aiming to predict recommendations and enhance customer satisfaction through a deeper understanding of sentiment in user-generated content(UGC).This research contributes to refining sentiment analysis models,ultimately fostering improved customer satisfaction in the airline industry.展开更多
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat...Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.展开更多
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across disciplines.Current studies frequently focus on single-use situations and lack a comprehens...A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across disciplines.Current studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and weaknesses.This gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment strategies.In this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly reviewed.We propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal integration.Advanced methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance measures.Frameworks for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are highlighted.The investigation’s scope,mad,and methods are described,but the primary results are not.The work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy applications.In medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote sensing.Parameter-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple domains.To discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain issues.The framework helps academics and practitioners identify,adapt,and innovate LLMs for different purposes.This work advances the field of efficient,interpretable,and ethical LLM application research.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ...The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.展开更多
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated...Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.展开更多
An ultra-wideband mixing component cascaded by a mixing multi-function chip and a frequency multiplier multi-function chip was demonstrated and implemented using 3D heterogeneous integration based on the silicon adapt...An ultra-wideband mixing component cascaded by a mixing multi-function chip and a frequency multiplier multi-function chip was demonstrated and implemented using 3D heterogeneous integration based on the silicon adapter board technology.Four layers of high-resistance silicon substrate stack packaging are implemented based on the wafer-level gold-gold bonding process.Each layer adopts though silicon via(TSV)technology to realize signal interconnection.A core monolithic integrated microwave chip(MMIC)is embedded in the silicon cavity,and the silicon-based filter is integrated with the high-resistance silicon substrate.The interconnect line,cavity and filter of the silicon-based adapter board are designed with AutoCAD,and HFSS is adopted for 3D electromagnetic field simulation.According to the measured results,the radio frequency(RF)of the mixing multi-function chip is 40-44 GHz and its intermediate frequency(IF)can cover the Ku band with a chip size of 10 mm×11 mm×1 mm.The multiplier multi-function chip operates at 16-20 GHz.The fundamental suppression is greater than 50 dB and the second harmonic suppression is better than 40 dB with a chip size of 8 mm×8 mm×1 mm.The cascaded fully assembled mixing component achieves a spur of better than-50 dBc and a gain of better than 15 dB.展开更多
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one...This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively.展开更多
To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separa...To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separation process, considering elastic forces of separating springs, hydrodynamic forces, gravity and buoyancy. Moreover, a criterion based on the maximum separating distance is put forward to determine whether adapters separate with the missile reliably. The results show that the magnitude and position of elastic force, the wedge angle and mass of the adapter significantly affect the separating process. The local sensitivity analysis for the reference status of design parameters demonstrates that the wedge angle of adapters has the maximum influence about 70. 4% on the separating distance.展开更多
Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning...Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
文摘In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance of two advanced models,the Large Language Model(LLM)LLaMA model and NLP BERT model,in the context of airline review sentiment analysis.Through fine-tuning,domain adaptation,and the application of few-shot learning,the study addresses the subtleties of sentiment expressions in airline-related text data.Employing predictive modeling and comparative analysis,the research evaluates the effectiveness of Large Language Model Meta AI(LLaMA)and Bidirectional Encoder Representations from Transformers(BERT)in capturing sentiment intricacies.Fine-tuning,including domain adaptation,enhances the models'performance in sentiment classification tasks.Additionally,the study explores the potential of few-shot learning to improve model generalization using minimal annotated data for targeted sentiment analysis.By conducting experiments on a diverse airline review dataset,the research quantifies the impact of fine-tuning,domain adaptation,and few-shot learning on model performance,providing valuable insights for industries aiming to predict recommendations and enhance customer satisfaction through a deeper understanding of sentiment in user-generated content(UGC).This research contributes to refining sentiment analysis models,ultimately fostering improved customer satisfaction in the airline industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.52306126,22350710788,12432010,11988102,92270203)the Xplore Prize.
文摘Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
文摘A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across disciplines.Current studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and weaknesses.This gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment strategies.In this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly reviewed.We propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal integration.Advanced methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance measures.Frameworks for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are highlighted.The investigation’s scope,mad,and methods are described,but the primary results are not.The work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy applications.In medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote sensing.Parameter-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple domains.To discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain issues.The framework helps academics and practitioners identify,adapt,and innovate LLMs for different purposes.This work advances the field of efficient,interpretable,and ethical LLM application research.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金the Assets4Rail Project which is funded by the Shift2Rail Joint Undertaking under the EU’s H2020 program(Grant No.826250)the Open Research Fund of State Key Laboratory of Traction Power of Southwest Jiaotong University(Grant No.TPL2011)+1 种基金part of the experiment data concerning the railway line is supported by the DynoTRAIN Project,funded by European Commission(Grant No.234079)The first author is also supported by the China Scholarship Council(Grant No.201707000113).
文摘The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.
基金financial support from the SERB-SURE under file number of SUR/2022/003129Jong Hyeok Park acknowledges the support of the National Research Foundation of Korea (NRF)funded by the Ministry of Science and ICT (RS-2023-00302697,RS-2023-00268523).
文摘Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.
文摘An ultra-wideband mixing component cascaded by a mixing multi-function chip and a frequency multiplier multi-function chip was demonstrated and implemented using 3D heterogeneous integration based on the silicon adapter board technology.Four layers of high-resistance silicon substrate stack packaging are implemented based on the wafer-level gold-gold bonding process.Each layer adopts though silicon via(TSV)technology to realize signal interconnection.A core monolithic integrated microwave chip(MMIC)is embedded in the silicon cavity,and the silicon-based filter is integrated with the high-resistance silicon substrate.The interconnect line,cavity and filter of the silicon-based adapter board are designed with AutoCAD,and HFSS is adopted for 3D electromagnetic field simulation.According to the measured results,the radio frequency(RF)of the mixing multi-function chip is 40-44 GHz and its intermediate frequency(IF)can cover the Ku band with a chip size of 10 mm×11 mm×1 mm.The multiplier multi-function chip operates at 16-20 GHz.The fundamental suppression is greater than 50 dB and the second harmonic suppression is better than 40 dB with a chip size of 8 mm×8 mm×1 mm.The cascaded fully assembled mixing component achieves a spur of better than-50 dBc and a gain of better than 15 dB.
基金This work was supported by China Scholarship Council(Grant No.201707000113).
文摘This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively.
文摘To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separation process, considering elastic forces of separating springs, hydrodynamic forces, gravity and buoyancy. Moreover, a criterion based on the maximum separating distance is put forward to determine whether adapters separate with the missile reliably. The results show that the magnitude and position of elastic force, the wedge angle and mass of the adapter significantly affect the separating process. The local sensitivity analysis for the reference status of design parameters demonstrates that the wedge angle of adapters has the maximum influence about 70. 4% on the separating distance.
基金This work is part of the research projects LaTe4PoliticES(PID2022-138099OBI00)funded by MICIU/AEI/10.13039/501100011033the European Regional Development Fund(ERDF)-A Way of Making Europe and LT-SWM(TED2021-131167B-I00)funded by MICIU/AEI/10.13039/501100011033the European Union NextGenerationEU/PRTR.Mr.Ronghao Pan is supported by the Programa Investigo grant,funded by the Region of Murcia,the Spanish Ministry of Labour and Social Economy and the European Union-NextGenerationEU under the“Plan de Recuperación,Transformación y Resiliencia(PRTR).”。
文摘Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives.