This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the ...This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.展开更多
“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an...“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.展开更多
A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalize...A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺...量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺正变换的硬币算符与迁移算符,构建了DTQW搜索算法步骤框图,在此基础上,应用SKW搜索算法对4节点无向图中的标记节点态进行搜索,通过态塌缩的观测,实现以1/4概率化读取出目标节点。研究结果表明,当有n个足够大的量子系统,并保持彼此之间的强纠缠性时,量子随机行走可以过渡到经典随机行走。文章还详细讨论了DTQW搜索算法实现左右同移的二次加速搜索机制。展开更多
To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system w...To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system with colored noise is transformed into the system with white noise. In order to improve estimates, the estimated noise variance is employed as a weighting factor in the algorithm. Meanwhile, a modified covariance resetting method is also integrated in the proposed algorithm to increase the convergence rate. A numerical example and an industrial example validate the proposed algorithm.展开更多
The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic di...The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic discrete time(DDT)methodology.Unlike other analysis methodologies,the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions.Through analyzing the dynamic characteristics of the weight vector,several convergence conditions are drawn,which are beneficial for its application.The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.展开更多
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for l...To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.展开更多
文摘This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.
文摘“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.
基金supported by Ministry of the Higher Education and Scientific Research in Tunisia
文摘A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
文摘量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺正变换的硬币算符与迁移算符,构建了DTQW搜索算法步骤框图,在此基础上,应用SKW搜索算法对4节点无向图中的标记节点态进行搜索,通过态塌缩的观测,实现以1/4概率化读取出目标节点。研究结果表明,当有n个足够大的量子系统,并保持彼此之间的强纠缠性时,量子随机行走可以过渡到经典随机行走。文章还详细讨论了DTQW搜索算法实现左右同移的二次加速搜索机制。
基金supported by National Natural Science Foundation of China(Nos.61273142 and 51477070)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Foundation for Six Talents by Jiangsu Province and Graduate Scientific Innovation Projects of Jiangsu University(No.KYXX_0003)
文摘To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system with colored noise is transformed into the system with white noise. In order to improve estimates, the estimated noise variance is employed as a weighting factor in the algorithm. Meanwhile, a modified covariance resetting method is also integrated in the proposed algorithm to increase the convergence rate. A numerical example and an industrial example validate the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61903375,61673387,61374120)Shaanxi Province Natural Science Foundation(2016JM6015)。
文摘The M?ller algorithm is a self-stabilizing minor component analysis algorithm.This research document involves the study of the convergence and dynamic characteristics of the M?ller algorithm using the deterministic discrete time(DDT)methodology.Unlike other analysis methodologies,the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions.Through analyzing the dynamic characteristics of the weight vector,several convergence conditions are drawn,which are beneficial for its application.The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.
基金provided by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant Nos.51261120375 and 51421064
文摘To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.