Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce...Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.展开更多
Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t...Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.展开更多
There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heati...There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heating at elevated temperatures,yet this great challenge remains.In this study,a strategy is reported to improve the thermal stability of subnanometric Pt cluster by hydrothermal deposition method.Based on this method,zirconium(Zr) was precisely doped on surface of Ce_(0.95)Zr_(0.05)O_(2) by accurately controlling Pt subnanometric cluster size.The surface doping of Zr is favorable for forming the Zr-O-Ce site and activating surface lattice oxygen atoms,which results in strong electronic interactions to stabilize the Pt subnanometric cluster.After high-temperature aging treatment at 1000℃/4 h,the single atom Pt supported on CeO_(2) is aggregated into larger sized(>3 nm) nanoparticle.In contrast,the single atom Pt supported on Ce_(0.95)Zr_(0.0)5O_(2) displays less agglomeration into subnanometric cluster with size of(1.4±0.3) nm.Moreover,the CO oxide catalytic performance of Ce_(0.95)Zr_(0.0)5O_(2)-Pt is 26% and 31%higher than that of CeO_(2)-Pt and commercial Al_(2)O_(3)-Pt catalysts,respectively.The experimental and density functional theory(DFT) calculations indicate that the Zr-O-Ce site and Pt subnanometric cluster interface have more defect sites and active oxygen species than CeO_(2)-Pt interface,which activate the Mars van Krevelen(MvK) mechanism,facilitating the catalytic performance.展开更多
Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a...Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a series of Schreibersite-type intermetallic compounds,particularly Mo_(2)Fe_(0.8)Ru_(0.2)P,are synthesized through high-temperature solid-phase synthesis.Experimental results demonstrate that the integration of Ru significantly improves the kinetics of proton adsorption and desorption during the hydrogen evolution reaction(HER).Additionally,density functional theory(DFT)calculations and X-ray absorption near edge structure(XANES)analyses effectively corroborate the pronounced d-orbital hybridization of Fe within the structure,which facilitates the transfer of hydroxide ions and the maintenance of material durability during alkaline HER processes.Remarkably,Mo_(2)Fe_(0.8)Ru_(0.2)P exhibits superior alkaline HER activity,characterized by an overpotential of merely 48 mV at a current density of 10 mA cm^(-2).After prolonged operation of 1000 h at high current densities(1.1 A cm^(-2)),the activity decline remains minimal,under 4%(with overpotential increasing from 258 mV to 268 mV).These results demonstrate the potential of strategically combining metallic elements to design high-performance industrial-grade electrocatalysts.展开更多
Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-N...Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
A thermodynamics-based unsaturated hydro-mechanical-chemical(HMC)coupling model is developed to analyze the coupled response and stability of boreholes in chemically active gas formations.The newly coupled constitutiv...A thermodynamics-based unsaturated hydro-mechanical-chemical(HMC)coupling model is developed to analyze the coupled response and stability of boreholes in chemically active gas formations.The newly coupled constitutive relations are formulated by incorporating the chemical effect into the solid-gasliquid unsaturated framework to account for the interactions between rock deformation,gas-liquid two-phase flow,and chemical potential difference.Compared with previous models,the present model shows significant prediction differences in field variables and wellbore stability evolution.The maximum absolute difference of pore pressure,effective radial stress,effective tangential stress,and collapse pressure can reach 8.98 MPa,7.64 MPa,7.29 MPa,7.65 MPa,respectively.It is more conservative to select a long-term wellbore collapse pressure rather than a short-term one to guide drilling operations.The two-phase flow behavior,jointly controlled by wellbore pressure,capillary pressure,and chemical osmosis effect,provides a more realistic observation of the mud intrusion process.Compared with low salinity muds,high salinity muds can effectively impede the mud intrusion into the formation,which is more conducive to preventing wellbore collapse,but at the same time increases the risk of wellbore fracture.Sensitivity analysis shows that solute diffusion and reflection coefficients affect early wellbore stability through pore pressure and solute transport,while the chemical swelling coefficient has a long-term effect through chemically induced deformation.The results can provide theoretical guidance for quantitative optimization of mud parameters and prevention of wellbore instability when drilling in chemically active gas formations.展开更多
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to...With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.展开更多
Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activi...Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activity and mood associated with backpacks in mountaineering and hiking, research is also needed from a psychological perspective. In this study, the effects of adjusting the backpack shoulder stabilizer were preliminarily tested in terms of subjective fatigue and changes in autonomic nervous activity after hiking. Methods: The experimental 15 healthy participants hiked the mountain under two conditions: 1) without adjusting the stabilizer, a feature of the backpack (NAH condition), and 2) with the stabilizer adjusted (AH condition). First, all participants hiked the mountain in the NAH condition, and after a 30-minute break, they began the hike in the AH condition after confirming that a) their heart rate had recovered and b) they were in good physical condition. Results: HR was significantly lower after each hiking session than during the session. RMSSD was significantly lower pre-AH and post-AH than the NAH condition, but there was no significant difference between the NAH condition and either post-NAH or post-AH. Additionally, RMSSD was significantly lower in the AH condition than pre-AH or post-AH. The shoulders and back were significantly more burdened in the NAH condition than in the AH condition. The pleasure level was significantly higher in the AH condition than in the NAH condition. Conclusion: The results showed that also adjusting the position of the waist belt when adjusting the shoulder stabilizer, which is mainly used for the neck and shoulders, has a significant positive effect on the subjective burden on the upper body and parasympathetic nervous system activity after hiking.展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,micro...The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.展开更多
There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to i...There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(Ⅲ)to form Fe(Ni)(Ⅲ)binary centres,which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates(Fe(Ⅲ)→Fe(Ni)(Ⅲ)→Fe(Ni)-OH→Fe(Ni)-O→Fe(Ni)OOH→Fe(Ⅲ))at the electrode/electrolyte interface to emit O_(2).Additionally,some ions(Co(Ⅱ),Ni(Ⅱ),and Cr(Ⅲ))can also be the active sites to catalyze the OER process on a variety of electrodes.The Fe(Ⅲ)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm^(-2)@~1.75 V.The results provide insights into the ioncatalyzed effects boosting OER performance.展开更多
In the original publication,incorrect version of Corresponding authors has been published.You-Yuan Huang and Bo Wang should be corresponding authors.The corrected Correspondingg authors are provided in this correction.
Developing high-voltage LiCoO_(2)(LCO)is essential in realizing practical all-solid-state lithium batteries(ASSLBs).However,high voltage-induced structural instability and oxygen evolution are crucial for the fast deg...Developing high-voltage LiCoO_(2)(LCO)is essential in realizing practical all-solid-state lithium batteries(ASSLBs).However,high voltage-induced structural instability and oxygen evolution are crucial for the fast degradation of layered metal oxide cathodes.This study reveals that the zirconization on the nearsurface region of LCO shows superior electrochemical performance at high voltage(≥4.5 V).Highangle annular dark field-scanning transmission electron microscopy firstly reveals the formation of sub-nanoscale Li_(2)CoZrO_(4)with disordered rock salt(a-LiFeO_(2))phase on the surface of LCO.Furthermore,zirconization could prevent the bending of the Co-O layers at high voltage,significantly inhibiting the formation of microcracks after many cycles and enhancing the structural stability of LCO,as further confirmed by high-resolution transmission electron microscopy.Further,Electron paramagnetic resonance and Electron energy loss spectroscopy provide direct experimental evidence that lattice oxygen on LCO at high voltage has greatly deactivated in sub-nanoscale zirconization(Li_(2)CoZrO_(4)).Density functional theory calculations reveal that Li_(2)CoZrO_(4)enhances the stability of lattice oxygen.Therefore,in ASSLBs,LZSO@LCO cathode exhibits impressive electrochemical cycling stability,e.g.,78.1% capacity retention after 1000 cycles at 0.5 C and 71.2% capacity retention over 100 cycles at 0.1 C at an extremely low temperature of -20℃.展开更多
Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@Ti...Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@TiO_(2)) was prepared using an ultrasonic-assisted coincident strategy,which demonstrated exceptional catalytic activity in the universal hydrogen evolution reaction (HER).Owing to the bimetallic synergistic effect and TiO_(2) confinement,PtMnP@TiO_(x)showed ultrasmall metal nanoparticles (NPs),a higher active Pt^(0) content,adequate activation at the porous surface,and abundant acid sites.Simulations were performed to visualize the strain properties of Mn and Pt during the bending process and demonstrate the high activity of Pt.The Pt-Mn bimetallic catalysts were enriched with Pt NPs,convoyed by electron transfer from Mn to Pt.Briefly,PtMnP@TiO_(2) showed robust evolution reaction activities (an overpotential of 220 mV at a current density of 10 mA cm^(-2) and a Tafel slope of 186 mV dec^(-1))and the ability to contrast stated catalysts without ultrasonication-plasma.This protocol revealed that the geometrical and electronic effects of Pt and P surrounding the Mn species in PtMnP@TiO_(2) were crucial for increasing the catalytic activity (99%) and durability (over 20 cycles),which were far superior to those of other reported catalysts.展开更多
Cobalt-based phosphides show excellent hydrogen evolution reaction(HER)performance,however,improving the intrinsic activity and stability of it in alkaline electrolyte still remains a challenge.Herein,CoRuOH/Co_(2)P/C...Cobalt-based phosphides show excellent hydrogen evolution reaction(HER)performance,however,improving the intrinsic activity and stability of it in alkaline electrolyte still remains a challenge.Herein,CoRuOH/Co_(2)P/CF with heterojunction structure was developed by means of molten salt and rapid hydrolysis(30 s).The OH-from rapid surface hydrolysis of Co_(2)P as a hydrogen adsorption site can facilitate the formation of thin CoRuOH layer as a water dissociation site,which may bring out better synergistic effect for alkaline HER.Moreover,the covering of CoRuOH can improve the stability of Co_(2)P for HER.When drives at 100 mA/cm^(2),it only requires overpotential of 81 mV in 1.0 mol/L KOH(25℃).Even at higher current density(1000 mA/cm^(2)),CoRuOH/Co_(2)P/CF can also operate stability for at least 100 h.When coupling with NiFe-LDH/IF in a two-electrode system,the voltage of NiFe-LDH/IF(+)||CoRuOH/Co_(2)P/CF(-)at 1000 mA/cm^(2)is merely 1.77 V with 100 h,demonstrating great potential for water splitting.The implementation of this work provides a new strategy and reference for the further improvement of transition metal phosphides as HER electrocatalysts.展开更多
In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepare...In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.展开更多
Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hy...Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.展开更多
Enzymes are extremely complicated biocatalysts in several industrial processes due to their numerous advantages over conventional catalysts,including lower physiological and environmental toxicity,exceptional selectiv...Enzymes are extremely complicated biocatalysts in several industrial processes due to their numerous advantages over conventional catalysts,including lower physiological and environmental toxicity,exceptional selectivity,and milder reaction conditions[1].However,their widespread applications are constrained by the high production costs,low operational stability,and complexity involved in the recovery and reusability of enzymes[2].展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1602700 and 2022YFB2502104)the National Natural Science Foundation of China(22375089)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332).
文摘Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.
文摘Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
基金supported by National Natural Science Foundation of China (52204376)Youth Foundation of Hebei Province (E2022103007)+1 种基金Open Project of Yunnan Precious Metals Laboratory Co.(YPML-20240502059)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)。
文摘There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heating at elevated temperatures,yet this great challenge remains.In this study,a strategy is reported to improve the thermal stability of subnanometric Pt cluster by hydrothermal deposition method.Based on this method,zirconium(Zr) was precisely doped on surface of Ce_(0.95)Zr_(0.05)O_(2) by accurately controlling Pt subnanometric cluster size.The surface doping of Zr is favorable for forming the Zr-O-Ce site and activating surface lattice oxygen atoms,which results in strong electronic interactions to stabilize the Pt subnanometric cluster.After high-temperature aging treatment at 1000℃/4 h,the single atom Pt supported on CeO_(2) is aggregated into larger sized(>3 nm) nanoparticle.In contrast,the single atom Pt supported on Ce_(0.95)Zr_(0.0)5O_(2) displays less agglomeration into subnanometric cluster with size of(1.4±0.3) nm.Moreover,the CO oxide catalytic performance of Ce_(0.95)Zr_(0.0)5O_(2)-Pt is 26% and 31%higher than that of CeO_(2)-Pt and commercial Al_(2)O_(3)-Pt catalysts,respectively.The experimental and density functional theory(DFT) calculations indicate that the Zr-O-Ce site and Pt subnanometric cluster interface have more defect sites and active oxygen species than CeO_(2)-Pt interface,which activate the Mars van Krevelen(MvK) mechanism,facilitating the catalytic performance.
基金supported by Research Grants of the NRF(2023R1A2C2003823,RS-2024-00405818)funded by the National Research Foundation under the Ministry of Science,ICT&Future,Korea。
文摘Employing multiple metals for synergistic electronic structure regulation emerges as a promising approach to develop highly efficient and robust electrocatalysts for hydrogen evolution at ampere levels.In this study,a series of Schreibersite-type intermetallic compounds,particularly Mo_(2)Fe_(0.8)Ru_(0.2)P,are synthesized through high-temperature solid-phase synthesis.Experimental results demonstrate that the integration of Ru significantly improves the kinetics of proton adsorption and desorption during the hydrogen evolution reaction(HER).Additionally,density functional theory(DFT)calculations and X-ray absorption near edge structure(XANES)analyses effectively corroborate the pronounced d-orbital hybridization of Fe within the structure,which facilitates the transfer of hydroxide ions and the maintenance of material durability during alkaline HER processes.Remarkably,Mo_(2)Fe_(0.8)Ru_(0.2)P exhibits superior alkaline HER activity,characterized by an overpotential of merely 48 mV at a current density of 10 mA cm^(-2).After prolonged operation of 1000 h at high current densities(1.1 A cm^(-2)),the activity decline remains minimal,under 4%(with overpotential increasing from 258 mV to 268 mV).These results demonstrate the potential of strategically combining metallic elements to design high-performance industrial-grade electrocatalysts.
基金supported by the National Natural Science Foundation of China(52225004 and 22276202)the National Key Research and Development Program of China(2022YFC3701804)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019045).
文摘Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金supported by the National Natural Science Foundation of China(Grant No.52474010)the Natural Science Foundation of Sichuan Province(Grant No.2024NSFSC0023)the Sichuan Science and Technology Program(Grant No.2020JDJQ0055).
文摘A thermodynamics-based unsaturated hydro-mechanical-chemical(HMC)coupling model is developed to analyze the coupled response and stability of boreholes in chemically active gas formations.The newly coupled constitutive relations are formulated by incorporating the chemical effect into the solid-gasliquid unsaturated framework to account for the interactions between rock deformation,gas-liquid two-phase flow,and chemical potential difference.Compared with previous models,the present model shows significant prediction differences in field variables and wellbore stability evolution.The maximum absolute difference of pore pressure,effective radial stress,effective tangential stress,and collapse pressure can reach 8.98 MPa,7.64 MPa,7.29 MPa,7.65 MPa,respectively.It is more conservative to select a long-term wellbore collapse pressure rather than a short-term one to guide drilling operations.The two-phase flow behavior,jointly controlled by wellbore pressure,capillary pressure,and chemical osmosis effect,provides a more realistic observation of the mud intrusion process.Compared with low salinity muds,high salinity muds can effectively impede the mud intrusion into the formation,which is more conducive to preventing wellbore collapse,but at the same time increases the risk of wellbore fracture.Sensitivity analysis shows that solute diffusion and reflection coefficients affect early wellbore stability through pore pressure and solute transport,while the chemical swelling coefficient has a long-term effect through chemically induced deformation.The results can provide theoretical guidance for quantitative optimization of mud parameters and prevention of wellbore instability when drilling in chemically active gas formations.
基金supported partially by the National Natural Science Foundation(No.62473344)the T-Flight Laboratory in ShanXi Provincial(No.GSFC2024NBKY05)+1 种基金the Natural Science Basic Research Program of Shaanxi(No.2025JC-YBQN-035)the National Natural Science Foundation of China(Grant No.92471204).
文摘With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability.
文摘Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activity and mood associated with backpacks in mountaineering and hiking, research is also needed from a psychological perspective. In this study, the effects of adjusting the backpack shoulder stabilizer were preliminarily tested in terms of subjective fatigue and changes in autonomic nervous activity after hiking. Methods: The experimental 15 healthy participants hiked the mountain under two conditions: 1) without adjusting the stabilizer, a feature of the backpack (NAH condition), and 2) with the stabilizer adjusted (AH condition). First, all participants hiked the mountain in the NAH condition, and after a 30-minute break, they began the hike in the AH condition after confirming that a) their heart rate had recovered and b) they were in good physical condition. Results: HR was significantly lower after each hiking session than during the session. RMSSD was significantly lower pre-AH and post-AH than the NAH condition, but there was no significant difference between the NAH condition and either post-NAH or post-AH. Additionally, RMSSD was significantly lower in the AH condition than pre-AH or post-AH. The shoulders and back were significantly more burdened in the NAH condition than in the AH condition. The pleasure level was significantly higher in the AH condition than in the NAH condition. Conclusion: The results showed that also adjusting the position of the waist belt when adjusting the shoulder stabilizer, which is mainly used for the neck and shoulders, has a significant positive effect on the subjective burden on the upper body and parasympathetic nervous system activity after hiking.
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金Funded by the National Key R&D Program of China(No.2022YFC3803400)。
文摘The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.
基金financially supported by the 2022 Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(STKJ202209077 and STKJ202209083)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(GDUPS2019)the City University of Hong Kong Strategic Research Grant(SRG)(7005505)。
文摘There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(Ⅲ)to form Fe(Ni)(Ⅲ)binary centres,which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates(Fe(Ⅲ)→Fe(Ni)(Ⅲ)→Fe(Ni)-OH→Fe(Ni)-O→Fe(Ni)OOH→Fe(Ⅲ))at the electrode/electrolyte interface to emit O_(2).Additionally,some ions(Co(Ⅱ),Ni(Ⅱ),and Cr(Ⅲ))can also be the active sites to catalyze the OER process on a variety of electrodes.The Fe(Ⅲ)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm^(-2)@~1.75 V.The results provide insights into the ioncatalyzed effects boosting OER performance.
文摘In the original publication,incorrect version of Corresponding authors has been published.You-Yuan Huang and Bo Wang should be corresponding authors.The corrected Correspondingg authors are provided in this correction.
基金supported by the National Natural Science Foundation of China(no.21203008,21975025,12274025,and 22372008)Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232 and ZDYF2023GXJS022)Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘Developing high-voltage LiCoO_(2)(LCO)is essential in realizing practical all-solid-state lithium batteries(ASSLBs).However,high voltage-induced structural instability and oxygen evolution are crucial for the fast degradation of layered metal oxide cathodes.This study reveals that the zirconization on the nearsurface region of LCO shows superior electrochemical performance at high voltage(≥4.5 V).Highangle annular dark field-scanning transmission electron microscopy firstly reveals the formation of sub-nanoscale Li_(2)CoZrO_(4)with disordered rock salt(a-LiFeO_(2))phase on the surface of LCO.Furthermore,zirconization could prevent the bending of the Co-O layers at high voltage,significantly inhibiting the formation of microcracks after many cycles and enhancing the structural stability of LCO,as further confirmed by high-resolution transmission electron microscopy.Further,Electron paramagnetic resonance and Electron energy loss spectroscopy provide direct experimental evidence that lattice oxygen on LCO at high voltage has greatly deactivated in sub-nanoscale zirconization(Li_(2)CoZrO_(4)).Density functional theory calculations reveal that Li_(2)CoZrO_(4)enhances the stability of lattice oxygen.Therefore,in ASSLBs,LZSO@LCO cathode exhibits impressive electrochemical cycling stability,e.g.,78.1% capacity retention after 1000 cycles at 0.5 C and 71.2% capacity retention over 100 cycles at 0.1 C at an extremely low temperature of -20℃.
基金supported by the National Research Foundation of Republic Korea (NRF-2022R1A2C1004392)。
文摘Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@TiO_(2)) was prepared using an ultrasonic-assisted coincident strategy,which demonstrated exceptional catalytic activity in the universal hydrogen evolution reaction (HER).Owing to the bimetallic synergistic effect and TiO_(2) confinement,PtMnP@TiO_(x)showed ultrasmall metal nanoparticles (NPs),a higher active Pt^(0) content,adequate activation at the porous surface,and abundant acid sites.Simulations were performed to visualize the strain properties of Mn and Pt during the bending process and demonstrate the high activity of Pt.The Pt-Mn bimetallic catalysts were enriched with Pt NPs,convoyed by electron transfer from Mn to Pt.Briefly,PtMnP@TiO_(2) showed robust evolution reaction activities (an overpotential of 220 mV at a current density of 10 mA cm^(-2) and a Tafel slope of 186 mV dec^(-1))and the ability to contrast stated catalysts without ultrasonication-plasma.This protocol revealed that the geometrical and electronic effects of Pt and P surrounding the Mn species in PtMnP@TiO_(2) were crucial for increasing the catalytic activity (99%) and durability (over 20 cycles),which were far superior to those of other reported catalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.52174283 and 52274308)。
文摘Cobalt-based phosphides show excellent hydrogen evolution reaction(HER)performance,however,improving the intrinsic activity and stability of it in alkaline electrolyte still remains a challenge.Herein,CoRuOH/Co_(2)P/CF with heterojunction structure was developed by means of molten salt and rapid hydrolysis(30 s).The OH-from rapid surface hydrolysis of Co_(2)P as a hydrogen adsorption site can facilitate the formation of thin CoRuOH layer as a water dissociation site,which may bring out better synergistic effect for alkaline HER.Moreover,the covering of CoRuOH can improve the stability of Co_(2)P for HER.When drives at 100 mA/cm^(2),it only requires overpotential of 81 mV in 1.0 mol/L KOH(25℃).Even at higher current density(1000 mA/cm^(2)),CoRuOH/Co_(2)P/CF can also operate stability for at least 100 h.When coupling with NiFe-LDH/IF in a two-electrode system,the voltage of NiFe-LDH/IF(+)||CoRuOH/Co_(2)P/CF(-)at 1000 mA/cm^(2)is merely 1.77 V with 100 h,demonstrating great potential for water splitting.The implementation of this work provides a new strategy and reference for the further improvement of transition metal phosphides as HER electrocatalysts.
基金Project supported by the National Natural Science Foundation of China(21962021)the Yunnan Fundamental Research Projects(202001AU070121)+1 种基金the National Natural Science Foundation of China(51908091)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-084)。
文摘In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃.
基金supported by the National Natural Science Foundation of China(Nos.52225004 and 22276182)the National Key R&D Program of China(Nos.2022YFC3701804 and 2022YFC3704400)the Science and Technology Innovation“2025”major program in Ningbo(No.2020Z103)。
文摘Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.
基金the support from Nanqiang Young Talents Supporting Program of Xiamen University。
文摘Enzymes are extremely complicated biocatalysts in several industrial processes due to their numerous advantages over conventional catalysts,including lower physiological and environmental toxicity,exceptional selectivity,and milder reaction conditions[1].However,their widespread applications are constrained by the high production costs,low operational stability,and complexity involved in the recovery and reusability of enzymes[2].