期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Analysis of the Effect of Rehabilitation Nursing on Active Function in Knee Meniscus Injury
1
作者 SUNDanhua 《外文科技期刊数据库(文摘版)医药卫生》 2022年第4期056-059,共4页
Objective: to investigate the effect of rehabilitation nursing on activity function in knee meniscus injury. Methods: 60 patients with knee meniscus injury from 12-2020-December 2021. The control group was given routi... Objective: to investigate the effect of rehabilitation nursing on activity function in knee meniscus injury. Methods: 60 patients with knee meniscus injury from 12-2020-December 2021. The control group was given routine care, and the rehabilitation nursing group implements routine nursing combined rehabilitation nursing. The pain level, depression, anxiety, activity function, and satisfaction degree were compared between the two groups. Results: pain level, depression, activity function and satisfaction were lower than the control group, P <0.05. Conclusion: in case of knee meniscus injury, it can relieve depression and anxiety, improve activity function and reduce pain and improve satisfaction. 展开更多
关键词 rehabilitation nursing knee meniscus injury knee arthroscopic surgical treatment activity function impact
暂未订购
Med-ReLU: A Parameter-Free Hybrid Activation Function for Deep Artificial Neural Network Used in Medical Image Segmentation
2
作者 Nawaf Waqas Muhammad Islam +3 位作者 Muhammad Yahya Shabana Habib Mohammed Aloraini Sheroz Khan 《Computers, Materials & Continua》 2025年第8期3029-3051,共23页
Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-base... Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-based feature representation,guided by forward and backward propagation.Acritical aspect of this process is the selection of an appropriate activation function(AF)to ensure robustmodel learning.However,existing activation functions often fail to effectively address the vanishing gradient problem or are complicated by the need for manual parameter tuning.Most current research on activation function design focuses on classification tasks using natural image datasets such asMNIST,CIFAR-10,and CIFAR-100.To address this gap,this study proposesMed-ReLU,a novel activation function specifically designed for medical image segmentation.Med-ReLU prevents deep learning models fromsuffering dead neurons or vanishing gradient issues.It is a hybrid activation function that combines the properties of ReLU and Softsign.For positive inputs,Med-ReLU adopts the linear behavior of ReLU to avoid vanishing gradients,while for negative inputs,it exhibits the Softsign’s polynomial convergence,ensuring robust training and avoiding inactive neurons across the training set.The training performance and segmentation accuracy ofMed-ReLU have been thoroughly evaluated,demonstrating stable learning behavior and resistance to overfitting.It consistently outperforms state-of-the-art activation functions inmedical image segmentation tasks.Designed as a parameter-free function,Med-ReLU is simple to implement in complex deep learning architectures,and its effectiveness spans various neural network models and anomaly detection scenarios. 展开更多
关键词 Medical image segmentation U-Net deep learning models activation function
暂未订购
A Scoping Review on the Application of FAS in Postoperative Active Pain Management Among Surgical Patients in China
3
作者 Yuying Hu Yingge Tong +4 位作者 Huiqing Jin Wenqian Cheng Mengyu Xin Ke Ni Xiang Pan 《Journal of Clinical and Nursing Research》 2025年第10期199-208,共10页
Objective:To conduct a scoping review on the application status of the Functional Activity Score(FAS)in postoperative active pain management in China,providing a reference for its standardized and normative promotion.... Objective:To conduct a scoping review on the application status of the Functional Activity Score(FAS)in postoperative active pain management in China,providing a reference for its standardized and normative promotion.Methods:Computerized searches of Chinese and English databases were performed to collect studies published by Chinese scholars from 2005 to July 2025 on the application of FAS in postoperative active pain management.After strict screening,the basic characteristics,application fields,assessment models,evaluation timing,types of functional activities,and clinical outcomes of the included literature were systematically analyzed.Results:A total of 18 studies were included,involving surgical types such as thoracic surgery,general surgery,and orthopedics.All studies adopted FAS combined with the Numeric Rating Scale(NRS)for assessment,with evaluation timing mostly concentrated within 72 hours postoperatively.The selected functional activities primarily included respiration-related and limb movements.Evaluation indicators covered pain control,functional recovery,complications,adverse events,patient experience,and tool assessment,with most studies reporting positive outcomes.Conclusion:FAS can effectively enhance pain control and promote functional recovery in postoperative active pain management in China,demonstrating high clinical value.However,existing studies exhibit inconsistencies in assessment criteria,selection of activity types,and research quality. 展开更多
关键词 Activity pain functional activity score Pain management Scoping review Surgical nursing
暂未订购
Effect of Preparation Process of Functional Polymer Active Materials on Properties of Gadolinium Ion Selective Electrode
4
作者 车吉泰 闫美兰 +1 位作者 林安 张万喜 《Journal of Rare Earths》 SCIE EI CAS CSCD 1991年第3期226-227,共2页
Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadoli... Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which 展开更多
关键词 functional polymer active materials Gadolinium ion selective electrode Grafted polymers
在线阅读 下载PDF
EFFECT OF STRUCTURE OF FUNCTIONAL POLYMER ACTIVE MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE ELECTRODE
5
作者 车吉泰 闫美兰 张万喜 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第3期189-193,共5页
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti... In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes. 展开更多
关键词 HDPE EFFECT OF STRUCTURE OF functionAL POLYMER active MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE ELECTRODE
在线阅读 下载PDF
FUNCTIONALIZED CYCLODEXSTRINS BEARING AM INOALKYLIMINO GROUPS AS ACTIVE CENTERS TO CATALYZE ALDOL CONDENSATIONS
6
作者 De Qi YUAN Ru Gang XIE Hua Ming ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第8期617-620,共4页
Efficient catalysis of functinnatized β-cyctodextrins bearing aninoatkytimino groups for atdot condensations of nitrobenzatdehydes and acetone has been effected and substantiated by preparative experiments
关键词 NBA functionALIZED CYCLODEXSTRINS BEARING AM INOALKYLIMINO GROUPS AS active CENTERS TO CATALYZE ALDOL CONDENSATIONS AS AM
在线阅读 下载PDF
Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function
7
作者 Xiang Ren Tan Mary C.Stephenson +4 位作者 Sharifah Badriyah Alhadad Kelvin W.Z.Loh Tuck Wah Soong Jason K.W.Lee Ivan C.C.Low 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期233-244,共12页
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres... Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance. 展开更多
关键词 Brain functional activity COGNITION Heat stress HYPERTHERMIA Motor function
在线阅读 下载PDF
Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions
8
作者 Munirul Hasan Mustafizur Rahman +5 位作者 Mohammad Saiful Islam Wong Hung Chan Yasser M.Alginahi Muhammad Nomani Kabir Suraya Abu Bakar Devarajan Ramasamy 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期537-556,共20页
A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range.In most radiators that are used to cool an engine,water serves as a cooling fluid.The performance ... A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range.In most radiators that are used to cool an engine,water serves as a cooling fluid.The performance of a radiator in terms of heat transmission is significantly influenced by the incorporation of nanoparticles into the cooling water.Concentration and uniformity of nanoparticle distribution are the two major factors for the practical use of nanofluids.The shape and size of nanoparticles also have a great impact on the performance of heat transfer.Many researchers are investigating the impact of nanoparticles on heat transfer.This study aims to develop an artificial neural network(ANN)model for predicting the thermal conductivity of an ethylene glycol(EG)/waterbased crystalline nanocellulose(CNC)nanofluid for cooling internal combustion engine.The implementation of an artificial neural network considering different activation functions in the hidden layer is made to find the bestmodel for the cooling of an engine using the nanofluid.Accuracies of the model with different activation functions in artificial neural networks are analyzed for different nanofluid concentrations and temperatures.In artificial neural networks,Levenberg–Marquardt is an optimization approach used with activation functions,including Tansig and Logsig functions in the training phase.The findings of each training,testing,and validation phase are presented to demonstrate the network that provides the highest level of accuracy.The best result was obtained with Tansig,which has a correlation of 0.99903 and an error of 3.7959×10^(–8).It has also been noticed that the Logsig function can also be a good model due to its correlation of 0.99890 and an error of 4.9218×10^(–8).Thus ourANNwith Tansig and Logsig functions demonstrates a high correlation between the actual output and the predicted output. 展开更多
关键词 Artificial neural network activation function thermal conductivity NANOCELLULOSE
在线阅读 下载PDF
To Actively Perform the Judicial Administration Function and Promote the Development of Cause of Human Rights
9
作者 Xu Xinyan 《The Journal of Human Rights》 2016年第1期87-92,共6页
Respect for human rights and protection of human rights are significant rules in the Constitution of the People’s Republic of China.In 2015,judicial administration departments at all levels legally exercised their du... Respect for human rights and protection of human rights are significant rules in the Constitution of the People’s Republic of China.In 2015,judicial administration departments at all levels legally exercised their duties,implemented the principles and rules in constitution,and kept strengthening propagation of human rights through creation of contents and methods which had acquired great effects.What they have done contributes significantly toward the development of human rights in China. 展开更多
关键词 work To actively Perform the Judicial Administration function and Promote the Development of Cause of Human Rights
原文传递
Fusion of Activation Functions: An Alternative to Improving Prediction Accuracy in Artificial Neural Networks
10
作者 Justice Awosonviri Akodia Clement K. Dzidonu +1 位作者 David King Boison Philip Kisembe 《World Journal of Engineering and Technology》 2024年第4期836-850,共15页
The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal... The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area. 展开更多
关键词 Artificial Neural Networks Container Dwell Time Fusion of Activation functions Randomized Search CV Algorithm Prediction Accuracy
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
11
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Tunnel face reliability analysis using active learning Kriging model——Case of a two-layer soils 被引量:4
12
作者 LI Tian-zheng DIAS Daniel 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1735-1746,共12页
This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of lim... This paper is devoted to the probabilistic stability analysis of a tunnel face excavated in a two-layer soil. The interface of the soil layers is assumed to be positioned above the tunnel roof. In the framework of limit analysis, a rotational failure mechanism is adopted to describe the face failure considering different shear strength parameters in the two layers. The surrogate Kriging model is introduced to replace the actual performance function to perform a Monte Carlo simulation. An active learning function is used to train the Kriging model which can ensure an efficient tunnel face failure probability prediction without loss of accuracy. The deterministic stability analysis is given to validate the proposed tunnel face failure model. Subsequently, the number of initial sampling points, the correlation coefficient, the distribution type and the coefficient of variability of random variables are discussed to show their influences on the failure probability. The proposed approach is an advisable alternative for the tunnel face stability assessment and can provide guidance for tunnel design. 展开更多
关键词 reliability analysis tunnel face Kriging model active learning function failure probability
在线阅读 下载PDF
Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow 被引量:2
13
作者 Qinghua Jiang Lailai Zhu +1 位作者 Chang Shu Vinothkumar Sekar 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第12期1757-1772,共16页
To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with ad... To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with adaptive centers and widths,which is composed of more than one hidden layer.In the hidden layer of the RBF-activated MLP network(MLPRBF),the outputs of the preceding layer are first linearly transformed and then fed into the univariate Gaussian RBF,which exploits the highly nonlinear property of RBF.Adaptive RBFs might address the issues of saturated outputs,low sensitivity,and vanishing gradients in MLPs activated by other prevailing nonlinear functions.Finally,we apply four MLP networks with the rectified linear unit(ReLU),sigmoid function(sigmoid),hyperbolic tangent function(tanh),and Gaussian RBF as the activation functions to approximate the one-dimensional(1D)sinusoidal function,the analytical solution of viscous Burgers’equation,and the two-dimensional(2D)steady lid-driven cavity flows.Using the same network structure,MLP-RBF generally predicts more accurately and converges faster than the other threeMLPs.MLP-RBF using less hidden layers and/or neurons per layer can yield comparable or even higher approximation accuracy than other MLPs equipped with more layers or neurons. 展开更多
关键词 Multilayer perceptron neural network Activation function Radial basis function Numerical approximation
原文传递
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:6
14
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
在线阅读 下载PDF
Altered intrinsic functional connectivity of the primary visual cortex in youth patients with comitant exotropia: a resting state fMRI study 被引量:14
15
作者 Pei-Wen Zhu Xin Huang +5 位作者 Lei Ye Nan Jiang Yu-Lin Zhong Qing Yuan Fu-Qing Zhou Yi Shao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第4期668-673,共6页
AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic reson... AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic resonance imaging(f MRI) data.METHODS: Totally, 32 CEs(25 males and 7 females) and 32 healthy control subjects(HCs)(25 males and 7 females) were enrolled in the study and underwent the MRI scanning. Two-sample t-test was used to examine differences in FC maps between the CE patients and HCs. RESULTS: The CE patients showed significantly less FC between the left brodmann area(BA17) and left lingual gyrus/cerebellum posterior lobe, right middle occipital gyrus, left precentral gyrus/postcentral gyrus and right inferior parietal lobule/postcentral gyrus. Meanwhile, CE patients showed significantly less FC between right BA17 and right middle occipital gyrus(BA19, 37).CONCLUSION: Our findings show that CE involves abnormal FC in primary visual cortex in many regions, which may underlie the pathologic mechanism of impaired fusion and stereoscopic vision in CEs. 展开更多
关键词 comitant exotropia functional connectivity primary visual cortex spontaneous activity
原文传递
A Universal Activation Function for Deep Learning
16
作者 Seung-Yeon Hwang Jeong-Joon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第5期3553-3569,共17页
Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of ... Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity.Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process.However,it takes a lot of time and effort for researchers to use the existing activation function in their research.Therefore,in this paper,we propose a universal activation function(UA)so that researchers can easily create and apply various activation functions and improve the performance of neural networks.UA can generate new types of activation functions as well as functions like traditional activation functions by properly adjusting three hyperparameters.The famous Convolutional Neural Network(CNN)and benchmark datasetwere used to evaluate the experimental performance of the UA proposed in this study.We compared the performance of the artificial neural network to which the traditional activation function is applied and the artificial neural network to which theUA is applied.In addition,we evaluated the performance of the new activation function generated by adjusting the hyperparameters of theUA.The experimental performance evaluation results showed that the classification performance of CNNs improved by up to 5%through the UA,although most of them showed similar performance to the traditional activation function. 展开更多
关键词 Deep learning activation function convolutional neural network benchmark datasets universal activation function
在线阅读 下载PDF
Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginarytype activation functions
17
作者 黄玉娇 胡海根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期271-279,共9页
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition,... In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. 展开更多
关键词 complex-valued recurrent neural network discontinuous real-imaginary-type activation function MULTISTABILITY delay
原文传递
Global Exponential Periodicity of a Class of Recurrent Neural Networks with Non-Monotone Activation Functions and Time-Varying Delays
18
作者 LI Biwen 《Wuhan University Journal of Natural Sciences》 CAS 2009年第6期475-480,共6页
The stability of a periodic oscillation and the global exponential class of recurrent neural networks with non-monotone activation functions and time-varying delays are analyzed. For two sets of activation functions, ... The stability of a periodic oscillation and the global exponential class of recurrent neural networks with non-monotone activation functions and time-varying delays are analyzed. For two sets of activation functions, some algebraic criteria for ascertaining global exponential periodicity and global exponential stability of the class of recurrent neural networks are derived by using the comparison principle and the theory of monotone operator. These conditions are easy to check in terms of system parameters. In addition, we provide a new and efficacious method for the qualitative analysis of various neural networks. 展开更多
关键词 recurrent neural networks non-monotone activation functions global exponential stability comparison principle monotone operator
原文传递
Activation Functions Effect on Fractal Coding Using Neural Networks
19
作者 Rashad A.Al-Jawfi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期957-965,共9页
Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results,since without this nonlinearity,the results of the network will be less accurate.Nonlinearity... Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results,since without this nonlinearity,the results of the network will be less accurate.Nonlinearity is the mission of all nonlinear functions,except for polynomials.The activation function must be dif-ferentiable for backpropagation learning.This study’s objective is to determine the best activation functions for the approximation of each fractal image.Different results have been attained using Matlab and Visual Basic programs,which indi-cate that the bounded function is more helpful than other functions.The non-lin-earity of the activation function is important when using neural networks for coding fractal images because the coefficients of the Iterated Function System are different according to the different types of fractals.The most commonly cho-sen activation function is the sigmoidal function,which produces a positive value.Other functions,such as tansh or arctan,whose values can be positive or negative depending on the network input,tend to train neural networks faster.The coding speed of the fractal image is different depending on the appropriate activation function chosen for each fractal shape.In this paper,we have provided the appro-priate activation functions for each type of system of iterated functions that help the network to identify the transactions of the system. 展开更多
关键词 Activation function fractal coding iterated function system
在线阅读 下载PDF
Neural Networks on an FPGA and Hardware-Friendly Activation Functions
20
作者 Jiong Si Sarah L. Harris Evangelos Yfantis 《Journal of Computer and Communications》 2020年第12期251-277,共27页
This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Te... This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Technology (MNIST) database. We also propose a novel hardware-friendly activation function called the dynamic Rectifid Linear Unit (ReLU)—D-ReLU function that achieves higher performance than traditional activation functions at no cost to accuracy. We built a 2-layer online training multilayer perceptron (MLP) neural network on an FPGA with varying data width. Reducing the data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the FPGA area decreases by 41%. Compared to networks that use the sigmoid functions, our proposed D-ReLU function uses 24% - 41% less area with no loss to prediction accuracy. Further reducing the data width of the 3-layer networks from 8 to 4 bits, the prediction accuracies only decrease by 3% - 5%, with area being reduced by 9% - 28%. Moreover, FPGA solutions have 29 times faster execution time, even despite running at a 60× lower clock rate. Thus, FPGA implementations of neural networks offer a high-performance, low power alternative to traditional software methods, and our novel D-ReLU activation function offers additional improvements to performance and power saving. 展开更多
关键词 Deep Learning D-ReLU Dynamic ReLU FPGA Hardware Acceleration Activation function
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部