BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a prevalent neurodevelopmental disorder in adolescents characterized by inattention,hyperactivity,and impulsivity,which impact cognitive,behavioral,and emoti...BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a prevalent neurodevelopmental disorder in adolescents characterized by inattention,hyperactivity,and impulsivity,which impact cognitive,behavioral,and emotional functioning.Resting-state functional magnetic resonance imaging(rs-fMRI)provides critical insights into the functional architecture of the brain in ADHD.Despite extensive research,specific brain regions consistently affected in ADHD patients during these formative years have not been comprehensively delineated.AIM To identify consistent vulnerable brain regions in adolescent ADHD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We conducted a comprehensive literature search up to August 31,2024,to identify studies investigating functional brain alterations in adolescents with ADHD.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF),dynamic ALFF(dALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with ADHD with those in healthy controls(HCs)using ALE.RESULTS Fifteen studies(468 adolescent ADHD patients and 466 HCs)were included.Combining the ReHo and ALFF/fALFF/dALFF data,the results revealed increased activity in the right lingual gyrus[LING,Brodmann Area(BA)18],left LING(BA 18),and right cuneus(CUN,BA 23)in adolescent ADHD patients compared with HCs(voxel size:592-32 mm³,P<0.05).Decreased activity was observed in the left medial frontal gyrus(MFG,BA 9)and left precuneus(PCUN,BA 31)in adolescent ADHD patients compared with HCs(voxel size:960-456 mm³,P<0.05).Jackknife sensitivity analyses demonstrated robust reproducibility in 11 of the 13 tests for the right LING,left LING,and right CUN and in 11 of the 14 tests for the left MFG and left PCUN.CONCLUSION We identified specific brain regions with both increased and decreased activity in adolescent ADHD patients,enhancing our understanding of the neural alterations that occur during this pivotal stage of development.展开更多
BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging ...BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies.展开更多
BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers uniqu...BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents.展开更多
OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method....OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.展开更多
Background:Several studies using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have indicated that cognitive remediation therapy (CRT) might improve cognitive function by c...Background:Several studies using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have indicated that cognitive remediation therapy (CRT) might improve cognitive function by changing brain activations in patients with schizophrenia.However,the results were not consistent in these changed brain areas in different studies.The present activation likelihood estimation (ALE) meta-analysis was conducted to investigate whether cognitive function change was accompanied by the brain activation changes,and where the main areas most related to these changes were in schizophrenia patients after CRT.Analyses of whole-brain studies and whole-brain + region of interest (ROI) studies were compared to explore the effect of the different methodologies on the results.Methods:A computerized systematic search was conducted to collect fMRI and PET studies on brain activation changes in schizophrenia patients from pre-to post-CRT.Nine studies using fMRI techniques were included in the meta-analysis.Ginger ALE 2.3.1 was used to perform meta-analysis across these imaging studies.Results:The main areas with increased brain activation were in frontal and parietal lobe,including left medial frontal gyrus,left inferior frontal gyrus,right middle frontal gyrus,right postcentral gyrus,and inferior parietal lobule in patients after CRT,yet no decreased brain activation was found.Although similar increased activation brain areas were identified in ALE with or without ROI studies,analysis including ROI studies had a higher ALE value.Conclusions:The current findings suggest that CRT might improve the cognition of schizophrenia patients by increasing activations of the frontal and parietal lobe.In addition,it might provide more evidence to confirm results by including ROI studies in ALE meta-analysis.展开更多
The prefrontal cortex(PFC)is a critical non-invasive brain stimulation(NIBS)target for treating depression.However,the alterations of brain activations post-intervention remain inconsistent and the clinical moderators...The prefrontal cortex(PFC)is a critical non-invasive brain stimulation(NIBS)target for treating depression.However,the alterations of brain activations post-intervention remain inconsistent and the clinical moderators that could improve symptomatic effectiveness are unclear.The study aim was to systematically review the effectiveness of NIBS on depressive symptoms targeting PFC in functional magnetic resonance imaging(fMRI)studies.In our study,we delivered a combined activation likelihood estimation(ALE)meta-analysis and meta-regression.Until November 2020,three databases(PubMed,Web of Science,EMBASE)were searched and 14 studies with a total sample size of 584 were included in the ALE meta-analysis;after NIBS,four clusters in left cerebrum revealed significant activation while two clusters in right cerebrum revealed significant deactivation(P<0.001,cluster size>150 mm3).Eleven studies were statistically reanalyzed for depressive symptoms pre–post active-NIBS and the pooled effect size was very large[(d=1.82,95%CI(1.23,2.40)];significant moderators causing substantial heterogeneity(Chi squared=75.25,P<0.01;I2=87%)were detected through subgroup analysis and univariate meta-regression.Multivariate meta-regression was then conducted accordingly and the model suggested good fitness(Q=42.32,P<0.01).In all,NIBS targeting PFC balanced three core depressive-related neurocognitive networks(the salience network,the default mode network,and the central executive network);the striatum played a central role and might serve as a candidate treatment biomarker;gender difference,treatment-resistant condition,comorbidity,treatment duration,and localization all contributed to moderating depressive symptoms during NIBS.More high-quality,multi-center randomized controlled trails delivering personalized NIBS are needed for clinical practice in the future.展开更多
基金Supported by National Natural Science Foundation of China,No.82460282Guizhou Province Science and Technology Plan Project,No.ZK-2023-195+1 种基金Guizhou High-Level Innovative Talent Project,No.gzwjrs2022-013Health Commission of Guizhou Province Project,No.gzwkj2024-475 and No.gzwkj2021-150.
文摘BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a prevalent neurodevelopmental disorder in adolescents characterized by inattention,hyperactivity,and impulsivity,which impact cognitive,behavioral,and emotional functioning.Resting-state functional magnetic resonance imaging(rs-fMRI)provides critical insights into the functional architecture of the brain in ADHD.Despite extensive research,specific brain regions consistently affected in ADHD patients during these formative years have not been comprehensively delineated.AIM To identify consistent vulnerable brain regions in adolescent ADHD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We conducted a comprehensive literature search up to August 31,2024,to identify studies investigating functional brain alterations in adolescents with ADHD.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF),dynamic ALFF(dALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with ADHD with those in healthy controls(HCs)using ALE.RESULTS Fifteen studies(468 adolescent ADHD patients and 466 HCs)were included.Combining the ReHo and ALFF/fALFF/dALFF data,the results revealed increased activity in the right lingual gyrus[LING,Brodmann Area(BA)18],left LING(BA 18),and right cuneus(CUN,BA 23)in adolescent ADHD patients compared with HCs(voxel size:592-32 mm³,P<0.05).Decreased activity was observed in the left medial frontal gyrus(MFG,BA 9)and left precuneus(PCUN,BA 31)in adolescent ADHD patients compared with HCs(voxel size:960-456 mm³,P<0.05).Jackknife sensitivity analyses demonstrated robust reproducibility in 11 of the 13 tests for the right LING,left LING,and right CUN and in 11 of the 14 tests for the left MFG and left PCUN.CONCLUSION We identified specific brain regions with both increased and decreased activity in adolescent ADHD patients,enhancing our understanding of the neural alterations that occur during this pivotal stage of development.
基金Supported by the Guizhou Province Science and Technology Plan Project,No.ZK-2023-1952021 Health Commission of Guizhou Province Project,No.gzwkj2021-150.
文摘BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies.
基金Supported by The 2024 Guizhou Provincial Health Commission Science and Technology Fund Project,No.gzwkj2024-47502022 Provincial Clinical Key Specialty Construction Project。
文摘BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents.
基金supported by the National Natural Science Foundation of China,No.81473769(to WW),81772430(to WW)a grant from the Training Program of Innovation and Entrepreneurship for Undergraduates of Southern Medical University of Guangdong Province of China in 2016,No.201612121057(to WW)
文摘OBJECTIVE: The objective of this study is to summarize and analyze the brain signal patterns of empathy for pain caused by facial expressions of pain utilizing activation likelihood estimation, a meta-analysis method. DATA SOURCES: Studies concerning the brain mechanism were searched from the Science Citation Index, Science Direct, PubMed, DeepDyve, Cochrane Library, SinoMed, Wanfang, VIP, China National Knowledge Infrastructure, and other databases, such as SpringerLink, AMA, Science Online, Wiley Online, were collected. A time limitation of up to 13 December 2016 was applied to this study. DATA SELECTION: Studies presenting with all of the following criteria were considered for study inclusion: Use of functional magnetic resonance imaging, neutral and pained facial expression stimuli, involvement of adult healthy human participants over 18 years of age, whose empathy ability showed no difference from the healthy adult, a painless basic state, results presented in Talairach or Montreal Neurological Institute coordinates, multiple studies by the same team as long as they used different raw data. OUTCOME MEASURES: Activation likelihood estimation was used to calculate the combined main activated brain regions under the stimulation of pained facial expression. RESULTS: Eight studies were included, containing 178 subjects. Meta-analysis results suggested that the anterior cingulate cortex(BA32), anterior central gyrus(BA44), fusiform gyrus, and insula(BA13) were activated positively as major brain areas under the stimulation of pained facial expression. CONCLUSION: Our study shows that pained facial expression alone, without viewing of painful stimuli, activated brain regions related to pain empathy, further contributing to revealing the brain's mechanisms of pain empathy.
基金This study was supported by the grants from the National Nature Science Foundation of China
文摘Background:Several studies using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have indicated that cognitive remediation therapy (CRT) might improve cognitive function by changing brain activations in patients with schizophrenia.However,the results were not consistent in these changed brain areas in different studies.The present activation likelihood estimation (ALE) meta-analysis was conducted to investigate whether cognitive function change was accompanied by the brain activation changes,and where the main areas most related to these changes were in schizophrenia patients after CRT.Analyses of whole-brain studies and whole-brain + region of interest (ROI) studies were compared to explore the effect of the different methodologies on the results.Methods:A computerized systematic search was conducted to collect fMRI and PET studies on brain activation changes in schizophrenia patients from pre-to post-CRT.Nine studies using fMRI techniques were included in the meta-analysis.Ginger ALE 2.3.1 was used to perform meta-analysis across these imaging studies.Results:The main areas with increased brain activation were in frontal and parietal lobe,including left medial frontal gyrus,left inferior frontal gyrus,right middle frontal gyrus,right postcentral gyrus,and inferior parietal lobule in patients after CRT,yet no decreased brain activation was found.Although similar increased activation brain areas were identified in ALE with or without ROI studies,analysis including ROI studies had a higher ALE value.Conclusions:The current findings suggest that CRT might improve the cognition of schizophrenia patients by increasing activations of the frontal and parietal lobe.In addition,it might provide more evidence to confirm results by including ROI studies in ALE meta-analysis.
基金supported by National Science Fund for Distinguished Young Scholars(81725005 to Fei Wang)National Natural Science Foundation Regional Innovation and Development Joint Fund(U20A6005 to Fei Wang)+1 种基金Jiangsu Provincial Key Research and Development Program(BE2021617 to Fei Wang)National Natural Science Foundation of China(62176129 to Xizhe Zhang).
文摘The prefrontal cortex(PFC)is a critical non-invasive brain stimulation(NIBS)target for treating depression.However,the alterations of brain activations post-intervention remain inconsistent and the clinical moderators that could improve symptomatic effectiveness are unclear.The study aim was to systematically review the effectiveness of NIBS on depressive symptoms targeting PFC in functional magnetic resonance imaging(fMRI)studies.In our study,we delivered a combined activation likelihood estimation(ALE)meta-analysis and meta-regression.Until November 2020,three databases(PubMed,Web of Science,EMBASE)were searched and 14 studies with a total sample size of 584 were included in the ALE meta-analysis;after NIBS,four clusters in left cerebrum revealed significant activation while two clusters in right cerebrum revealed significant deactivation(P<0.001,cluster size>150 mm3).Eleven studies were statistically reanalyzed for depressive symptoms pre–post active-NIBS and the pooled effect size was very large[(d=1.82,95%CI(1.23,2.40)];significant moderators causing substantial heterogeneity(Chi squared=75.25,P<0.01;I2=87%)were detected through subgroup analysis and univariate meta-regression.Multivariate meta-regression was then conducted accordingly and the model suggested good fitness(Q=42.32,P<0.01).In all,NIBS targeting PFC balanced three core depressive-related neurocognitive networks(the salience network,the default mode network,and the central executive network);the striatum played a central role and might serve as a candidate treatment biomarker;gender difference,treatment-resistant condition,comorbidity,treatment duration,and localization all contributed to moderating depressive symptoms during NIBS.More high-quality,multi-center randomized controlled trails delivering personalized NIBS are needed for clinical practice in the future.