Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activ...Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activation deficiency(OAD),in which fertilization is impeded due to the oocyte’s inability to initiate embryogenesis,commonly attributed to inadequate intracellular calcium(Ca^(2+))release following sperm injection.Patient concerns:The couple repeatedly experienced complete or near-complete fertilization failure in previous ICSI cycles,raising suspicion of an underlying oocyte activation defect.Diagnosis:Based on the repeated absence of fertilization post-ICSI and clinical history,a diagnosis of suspected OAD leading to recurrent ICSI fertilization failure was considered.Interventions:Artificial oocyte activation(AOA)using the calcium ionophore A23187 was performed.After ICSI,unfertilized oocytes were exposed to the ionophore to induce Ca^(2+)influx,simulating physiological calcium oscillations essential for oocyte activation.The efficacy of intervention was evaluated through subsequent embryonic development,morphological grading,and chromosomal integrity.Outcomes:Following AOA treatment,successful oocyte activation occurred,resulting in the formation of high-grade embryos with normal developmental progression.Chromosomal analysis revealed no detectable abnormalities,indicating genomic stability.Lessons:Calcium ionophore–mediated AOA may serve as an effective adjunct in cases of recurrent ICSI failure attributed to OAD.This case highlights the importance of individualized therapeutic strategies in assisted reproduction;however,further research is needed to refine protocols,validate broader clinical efficacy,and assess long-term safety,including potential epigenetic risks.展开更多
Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-...Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.展开更多
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ...The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.展开更多
Achieving heterogeneous photocatalytic activation of sp^(3)C-H bonds and carboxylation of CO_(2)to produce arylacetic acids and alkyl carboxylic acids with increased carbon chains is a highly significant and demanding...Achieving heterogeneous photocatalytic activation of sp^(3)C-H bonds and carboxylation of CO_(2)to produce arylacetic acids and alkyl carboxylic acids with increased carbon chains is a highly significant and demanding research endeavor.In this work,a new method for synthesizing redox centers spatially separated Z-scheme CdS@graphitic carbon nitride(g-C_(3)N_(4))was developed,aiming to achieve photocatalytic benzylic and aliphatic sp^(3)C-H activation as well as CO_(2)carboxylation without sacrificial agent.Notably,both benzylic and aliphatic sp^(3)C-H activation together with CO_(2)carboxylation were achieved in heterogeneous photocatalytic system,resulting in the production of carboxylic acids with increased carbon chains under mild conditions.Various methylbenzene derivatives and cycloalkanes were employed to synthesize carbon-chain increased acids via a process involving K_(3)PO_(4)-assisted photogenerated holes activation for benzyl radical generation,photoinduced CO_(2)reduction,as well as solvent-assisted chemoselective carboxylation.Various characterizations and density functional theory(DFT)results revealed that Z-scheme CdS@g-C_(3)N_(4)not just significantly enhanced separation of charges and accumulation of photoinduced electrons on g-C_(3)N_(4)but also facilitated adsorption along with activation of CO_(2).This research provided novel heterogeneous photocatalytic approach to produce carbon chains increased carboxylic acids via sp^(3)C-H activation and CO_(2)carboxylation.展开更多
Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and ineffici...Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and inefficient oxygen adsorption and activation.Herein,sodium(Na)and potassium(K)are co-incorporated into graphitic carbon nitride(g-C_(3)N_(4))via a stepwise co-doping strategy combining sodium chloride-induced and molten salt-assisted polymerization.Experimental results and density functional theory calculations demonstrate that the synergistic interaction between intralayer Na+ions and interlayer K^(+)ions facilitates charge carrier separation and migration both within and between g-C_(3)N_(4)layers.Additionally,multiple heteroatom sites enhance surface charge polarization and introduce cyano groups,which synergistically promote oxygen molecule(O_(2))adsorption and elevate local proton coverage.Simultaneously,the energy barrier for H_(2)O_(2)desorption on the optimal photocatalyst(5Na/3.3K-CN)is lowered,thus improving H_(2)O_(2)production efficiency.Eventually,5Na/3.3K-CN exhibits an impressive H_(2)O_(2)yield of 2541.6μmol·g^(-1)·h^(-1) in an artificial reactor,which is 10.6 times higher than that of pure g-C_(3)N_(4)(240.2μmol·g^(-1)·h^(-1)).Under natural sunlight outdoors,5Na/3.3K-CN still maintains ultrahigh H_(2)O_(2)photosynthesis efficiency,achieving an H_(2)O_(2)photosynthesis rate of 2068.7μmol·g^(-1)·h^(-1).This work introduces a straightforward method to simultaneously optimize charge transfer and O_(2)activation for boosting H_(2)O_(2)photosynthesis,offering valuable insights toward the real-world deployment of g-C_(3)N_(4)-based photocatalysts in environmental protection and energy conversion.展开更多
The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace K...The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.展开更多
This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vaso...This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.展开更多
The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,l...The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,leading to nitrogen-rich compounds.However,their use often results in a significant reduction in energy density.In this work,we propose a series of low-enthalpy nitrogen-rich phases in CN_(x)(x=3,...,7)compounds using a first-principles crystal structure search method.The results of calculations reveal that all these CN compounds are assembled from both CN_(4) tetrahedra and N_(x)(x=1,2,or 5)species.Strikingly,we find that the CN_(4) tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N_(2) under a pressure of 40 GPa,leading to stable CN polynitrides.The robust structural framework of CN polynitrides containing C-N and N-N bonds plays a crucial role in enhancing their structural stability,energy density,and hardness.Among these polynitrides,CN_(6) possesses not only a very high mass density of 3.19 g/cm^(3),but also an ultrahigh energy density of 28.94 kJ/cm^(3),which represents a significant advance in the development of energetic materials using high-pressure methods.This work provides new insights into the mechanism of N_(2) activation under high pressure,and offers a promising pathway to realize high-performance energetic materials.展开更多
Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly ele...Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts.In TNF-transgenic and Irg1−/−hybrid mice,a more severe bone destruction phenotype was observed.展开更多
Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19...Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19 is important for its function in osteoclast differentiation,and LEL-Fc,a competitive inhibitor of Tm4sf19,effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis.This study aimed to investigate the role of Tm4sf19 in RA,an inflammatory and abnormal osteoclast disease,using a mouse model of collagen-induced arthritis(CIA).Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium,and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group.Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model,reducing the CIA score,swelling,inflammation,cartilage damage,and bone damage.Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages.LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2,but also the interaction between TLR4 and MD2.μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice.Taken together,these findings suggest that LELFc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation.展开更多
Reproductive hormones associated with the hypothalamic-pituitary-gonadal(HPG)axis are closely linked to bone homeostasis.In this study,we demonstrate that Gonadotropin inhibitory hormone(GnIH,one of the key reproducti...Reproductive hormones associated with the hypothalamic-pituitary-gonadal(HPG)axis are closely linked to bone homeostasis.In this study,we demonstrate that Gonadotropin inhibitory hormone(GnIH,one of the key reproductive hormones upstream of the HPG axis)plays an indispensable role in regulating bone homeostasis and maintaining bone mass.We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density(BMD)in mice primarily by enhancement of osteoclast activation in vivo and in vitro.Mechanistically,GnIH/Gpr147 inhibits osteoclastogenesis by the PI3K/AKT,MAPK,NF-κB and Nfatc1 signaling pathways.Furthermore,GnIH treatment was able to alleviate bone loss in aging,ovariectomy(OVX)or LPS-induced mice.Moreover,the therapy using green light promotes the release of GnIH and rescues OVX-induced bone loss.In humans,serum GnIH increases and bone resorption markers decrease after green light exposure.Therefore,our study elucidates that GnIH plays an important role in maintaining bone homeostasis via modulating osteoclast differentiation and demonstrates the potential of GnIH therapy or green light therapy in preventing osteoporosis.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostas...Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.展开更多
The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that ...The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds...Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds,and precipitation at the MQ,where the dual-radar active remote sensing technique is integrated with precipitation observation for the first time.It is found from the observational study that during the Indian summer monsoon,aerosols from South Asia have a distinct activation effect on the cloud-precipitation process over the MQ.Under dynamic lifting,the increase in aerosols,which inhibits and delays weak precipitation over the MQ,instead intensifies the development of clouds over the MQ,leading to heavy precipitation on the north slope.The synergy of the MQ thermal-dynamic driving mechanism and the aerosol activation effect can trigger the deep convection in the precipitation process on the north slope of the MQ.Cloud development is more intense with the aerosol activation effect,and the diurnal cycle of convective clouds in the vertical change over the MQ presents a lag response to changing aerosols.From the perspective of climate impact on interannual variations,it can also be found that the frequency of light rain over the MQ present the significantly decreased trend,while the frequency of moderate to heavy precipitation on the north slope has a significantly increased trend,revealing the differentiated changes in the precipitation on the south and north slopes of the MQ under the influence of the aerosol activation effect on the cloud-precipitation process.展开更多
The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains...The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains lacking.This paper presented investigation on the degradation of tetracycline under two types of operating conditions,including“internal reaction conditions”(pH value and TC/PDS molar ratio)and“external physical conditions”(hole shape,solution temperature and inlet pressure).Special emphasis was paid on the analysis of thermal effects through a robust modeling approach.The results showed that a synergy index of 6.26 and a degradation rate of 56.71%could be obtained by the HC-PDS process,respectively,when the reaction conditions were optimized.Quenching experiment revealed that·OH and·SO_(4)^(-)were the predominant free radicals and their contribution to the degradation was 75.4%and 24.6%respectively,since a part of·SO_(4)^(-)was transformed into·OH in the solution.The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K,while·OH was generated in the bubble collapse region downstream the hole,where the temperature was much higher and favorable for the cleavage of water molecular.The average temperature under different external physical conditions was in good consistence with the degradation rates.This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.展开更多
Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate...Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.展开更多
Lead-tin(Pb-Sn)perovskites with an ideal bandgap of 1.34-1.40 eV show great promise in perovskite solar cells(PSCs).Recently,to address the environmental pollution and Sn^(2+)oxidation problems of dimethyl sulfoxide,m...Lead-tin(Pb-Sn)perovskites with an ideal bandgap of 1.34-1.40 eV show great promise in perovskite solar cells(PSCs).Recently,to address the environmental pollution and Sn^(2+)oxidation problems of dimethyl sulfoxide,methylammonium acetate(MAAc)ionic liquid has been developed as an alternative to fabricate ideal bandgap MAPb_(0.7)Sn_(0.3)I_(3)(1.36 eV)film via hot-casting in air.However,the spontaneous crystallization of Pb-Sn perovskite initiated by heat-induced supersaturation is fast and random,setting critical challenges in regulating crystal growth during the film-forming process.Herein,a lattice activation strategy is developed to control the crystallization dynamics of MAPb_(0.7)Sn_(0.3)I_(3)in MAAc to produce films with micrometer-sized grains in air.FA is shown to activate the crystal lattice that facilitates the formation of intermediates and balances the crystal growth of MAPb_(0.7)Sn_(0.3)I_(3),producing films with a grain size of 2.78±0.17μm.Furthermore,4-fluoro-phenethylammonium and phenethylammonium are adopted to passivate the defects in the film and promote the energy level alignment at the top interface,respectively.The optimized PSC device achieved an efficiency of 18.24%with a short-circuit current of 29.84 mA/cm^(2),which are both the highest values in 1.36 eV Pb-Sn PSCs to date.Notably,the unencapsulated devices show excellent storage and air stability under various conditions.展开更多
Rotenone is a lipophilic herbicide extensively utilized in experimental neurodegenerative models because of its capacity to disrupt complex I of the mitochondrial electron transport chain.This inhibition results in re...Rotenone is a lipophilic herbicide extensively utilized in experimental neurodegenerative models because of its capacity to disrupt complex I of the mitochondrial electron transport chain.This inhibition results in reduced ATP synthesis,elevated reactive oxygen species(ROS)formation,and mitochondrial malfunction,which instigates oxidative stress and cellular damage,critical elements in neurodegenerative disorders like Parkinson’s disease(PD),amyotrophic lateral sclerosis(ALS),and Alzheimer’s disease(AD).In addition to causing direct neuronal injury,rotenone significantly contributes to the activation of glial cells,specifically microglia and astrocytes.Activated microglia assumes a proinflammatory(M1)phenotype,distinguished by the secretion of inflammatory cytokines including tumor necrosis factor alpha(TNF-α),interleukin 1 beta(IL-1β),and interleukin 6(IL-6),with the generation of nitric oxide and ROS,which exacerbate the neuronal injury.Astrocytes can intensify neuroinflammation by secreting proinflammatory molecules and impairing their neuroprotective roles.Our hypothesis is that rotenone is posited to elicit a neuroinflammatory response via mitochondrial malfunction,ROS generation,and the activation of proinflammatory pathways in microglia and astrocytes.This mechanism leads to accelerated neuronal impair-ment,promoting neurodegeneration.Comprehending the inflammatory pathways activated by rotenone is crucial for pinpointing therapeutic targets to regulate glial responses and mitigate the advancement of neurodegenerative disorders linked to mitochondrial malfunction and chronic inflammation.This review examines the function of glial cells and critical inflammatory pathways,namely Nuclear factor kappaβ(NF-κB),Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin(PI3K/AKT/mTOR),and Wnt/β-catenin signaling pathway in Parkinson’s disease,Alzheimer’s disease,and ALS,emphasizing illness-specific responses and the translational constraints of rotenone-based models.The objective is to consolidate existing understanding regarding the role of rotenone-induced mitochondrial failure in promoting glial activation and neuroinflammation,highlighting the necessity for additional research into these pathways.Despite the prevalent application of rotenone in experimental models,its specific effects on glial-mediated inflammation are inadequately comprehended,necessitating further investigation to guide the formulation of targeted therapeutic strategies.展开更多
文摘Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activation deficiency(OAD),in which fertilization is impeded due to the oocyte’s inability to initiate embryogenesis,commonly attributed to inadequate intracellular calcium(Ca^(2+))release following sperm injection.Patient concerns:The couple repeatedly experienced complete or near-complete fertilization failure in previous ICSI cycles,raising suspicion of an underlying oocyte activation defect.Diagnosis:Based on the repeated absence of fertilization post-ICSI and clinical history,a diagnosis of suspected OAD leading to recurrent ICSI fertilization failure was considered.Interventions:Artificial oocyte activation(AOA)using the calcium ionophore A23187 was performed.After ICSI,unfertilized oocytes were exposed to the ionophore to induce Ca^(2+)influx,simulating physiological calcium oscillations essential for oocyte activation.The efficacy of intervention was evaluated through subsequent embryonic development,morphological grading,and chromosomal integrity.Outcomes:Following AOA treatment,successful oocyte activation occurred,resulting in the formation of high-grade embryos with normal developmental progression.Chromosomal analysis revealed no detectable abnormalities,indicating genomic stability.Lessons:Calcium ionophore–mediated AOA may serve as an effective adjunct in cases of recurrent ICSI failure attributed to OAD.This case highlights the importance of individualized therapeutic strategies in assisted reproduction;however,further research is needed to refine protocols,validate broader clinical efficacy,and assess long-term safety,including potential epigenetic risks.
文摘Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325004 and 52161160330)the National Natural Science Foundation of China (Grants No.12504233)+2 种基金Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0606900)the Talent Hub for “AI+New Materials” Basic Researchthe Key Research and Development Program of Ningbo (Grant No.2025Z088)。
文摘The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.
基金financially supported by Natural Science Foundation Project of CQ(No.CSTB2023NSCQ-LZX0067)Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202200804)+1 种基金Venture&Innovation Support Program for Chongqing Overseas Returnees(No.cx2020113)National Natural Science Foundation of China(No.21201184).
文摘Achieving heterogeneous photocatalytic activation of sp^(3)C-H bonds and carboxylation of CO_(2)to produce arylacetic acids and alkyl carboxylic acids with increased carbon chains is a highly significant and demanding research endeavor.In this work,a new method for synthesizing redox centers spatially separated Z-scheme CdS@graphitic carbon nitride(g-C_(3)N_(4))was developed,aiming to achieve photocatalytic benzylic and aliphatic sp^(3)C-H activation as well as CO_(2)carboxylation without sacrificial agent.Notably,both benzylic and aliphatic sp^(3)C-H activation together with CO_(2)carboxylation were achieved in heterogeneous photocatalytic system,resulting in the production of carboxylic acids with increased carbon chains under mild conditions.Various methylbenzene derivatives and cycloalkanes were employed to synthesize carbon-chain increased acids via a process involving K_(3)PO_(4)-assisted photogenerated holes activation for benzyl radical generation,photoinduced CO_(2)reduction,as well as solvent-assisted chemoselective carboxylation.Various characterizations and density functional theory(DFT)results revealed that Z-scheme CdS@g-C_(3)N_(4)not just significantly enhanced separation of charges and accumulation of photoinduced electrons on g-C_(3)N_(4)but also facilitated adsorption along with activation of CO_(2).This research provided novel heterogeneous photocatalytic approach to produce carbon chains increased carboxylic acids via sp^(3)C-H activation and CO_(2)carboxylation.
基金supported by the Program for New Century Talents in University(No.NCET-11-0951)from the Ministry of Education of ChinaKey Laboratory Project Fund of CAS(No.2005DP173065-2016-04).
文摘Photocatalytic oxygen reduction provides a sustainable method for on-site hydrogen peroxide(H_(2)O_(2))synthesis.However,most photocatalysts suffer from moderate kinetics due to sluggish electron transfer and inefficient oxygen adsorption and activation.Herein,sodium(Na)and potassium(K)are co-incorporated into graphitic carbon nitride(g-C_(3)N_(4))via a stepwise co-doping strategy combining sodium chloride-induced and molten salt-assisted polymerization.Experimental results and density functional theory calculations demonstrate that the synergistic interaction between intralayer Na+ions and interlayer K^(+)ions facilitates charge carrier separation and migration both within and between g-C_(3)N_(4)layers.Additionally,multiple heteroatom sites enhance surface charge polarization and introduce cyano groups,which synergistically promote oxygen molecule(O_(2))adsorption and elevate local proton coverage.Simultaneously,the energy barrier for H_(2)O_(2)desorption on the optimal photocatalyst(5Na/3.3K-CN)is lowered,thus improving H_(2)O_(2)production efficiency.Eventually,5Na/3.3K-CN exhibits an impressive H_(2)O_(2)yield of 2541.6μmol·g^(-1)·h^(-1) in an artificial reactor,which is 10.6 times higher than that of pure g-C_(3)N_(4)(240.2μmol·g^(-1)·h^(-1)).Under natural sunlight outdoors,5Na/3.3K-CN still maintains ultrahigh H_(2)O_(2)photosynthesis efficiency,achieving an H_(2)O_(2)photosynthesis rate of 2068.7μmol·g^(-1)·h^(-1).This work introduces a straightforward method to simultaneously optimize charge transfer and O_(2)activation for boosting H_(2)O_(2)photosynthesis,offering valuable insights toward the real-world deployment of g-C_(3)N_(4)-based photocatalysts in environmental protection and energy conversion.
基金supported by the National Natural Science Foundation of China(52376103,542B2081).
文摘The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.
文摘This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.
基金supported by the Higher Educational Youth Innovation Science and Technology Program Shandong Province(Grant Nos.2022KJ183 and 2022KJ175)the Natural Science Foundation of Shandong Province(Grant Nos.ZR2023MA016 and ZR2023JQ001)+1 种基金the National Natural Science Foundation of China(Grant Nos.11974208 and 12374012)financial support from the award of Taishan Scholar(Grant No.tsqn202211128).
文摘The activation of the N≡N triple bond in N_(2) is a fascinating topic in nitrogen chemistry.The transition metals have been demonstrated to effectively modulate the reactivity of N_(2) molecules under high pressure,leading to nitrogen-rich compounds.However,their use often results in a significant reduction in energy density.In this work,we propose a series of low-enthalpy nitrogen-rich phases in CN_(x)(x=3,...,7)compounds using a first-principles crystal structure search method.The results of calculations reveal that all these CN compounds are assembled from both CN_(4) tetrahedra and N_(x)(x=1,2,or 5)species.Strikingly,we find that the CN_(4) tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N_(2) under a pressure of 40 GPa,leading to stable CN polynitrides.The robust structural framework of CN polynitrides containing C-N and N-N bonds plays a crucial role in enhancing their structural stability,energy density,and hardness.Among these polynitrides,CN_(6) possesses not only a very high mass density of 3.19 g/cm^(3),but also an ultrahigh energy density of 28.94 kJ/cm^(3),which represents a significant advance in the development of energetic materials using high-pressure methods.This work provides new insights into the mechanism of N_(2) activation under high pressure,and offers a promising pathway to realize high-performance energetic materials.
基金supported by the National Natural Science Foundation of China(NSFC)(No.82130073,No.82372430,No.31871431,No.31821002,No.32101011,No.22177073)Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System+3 种基金Shanghai Science and Technology Committee(No.23ZR1437600,No.24410710600,No.24141901302)Shenzhen Medical Research Fund(No.B2302005)The Open Project Funding of Shanghai Key Laboratory of Orthopedics(No.KFKT202201)Biomaterials and Regenerative Medicine Institute Cooperative,Research Project,Shanghai Jiao Tong University School of Medicine(No.2022LHA01).
文摘Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts.In TNF-transgenic and Irg1−/−hybrid mice,a more severe bone destruction phenotype was observed.
基金supported by GILO Foundation.This research is in part supported by Korea Drug Development Fund funded by Ministry of Science and ICT,Ministry of Trade,Industry,and Energy,and Ministry of Health and Welfare(RS-2023-00282595,Republic of Korea).
文摘Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19 is important for its function in osteoclast differentiation,and LEL-Fc,a competitive inhibitor of Tm4sf19,effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis.This study aimed to investigate the role of Tm4sf19 in RA,an inflammatory and abnormal osteoclast disease,using a mouse model of collagen-induced arthritis(CIA).Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium,and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group.Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model,reducing the CIA score,swelling,inflammation,cartilage damage,and bone damage.Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages.LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2,but also the interaction between TLR4 and MD2.μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice.Taken together,these findings suggest that LELFc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation.
基金National Key Research and Development Program of China(2023YFB3810200 to J.L.)National Natural Science Foundation of China(92168204,82225030 to J.L.)Fundamental Research Funds for the Central Universities(22120210586 to J.L.)。
文摘Reproductive hormones associated with the hypothalamic-pituitary-gonadal(HPG)axis are closely linked to bone homeostasis.In this study,we demonstrate that Gonadotropin inhibitory hormone(GnIH,one of the key reproductive hormones upstream of the HPG axis)plays an indispensable role in regulating bone homeostasis and maintaining bone mass.We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density(BMD)in mice primarily by enhancement of osteoclast activation in vivo and in vitro.Mechanistically,GnIH/Gpr147 inhibits osteoclastogenesis by the PI3K/AKT,MAPK,NF-κB and Nfatc1 signaling pathways.Furthermore,GnIH treatment was able to alleviate bone loss in aging,ovariectomy(OVX)or LPS-induced mice.Moreover,the therapy using green light promotes the release of GnIH and rescues OVX-induced bone loss.In humans,serum GnIH increases and bone resorption markers decrease after green light exposure.Therefore,our study elucidates that GnIH plays an important role in maintaining bone homeostasis via modulating osteoclast differentiation and demonstrates the potential of GnIH therapy or green light therapy in preventing osteoporosis.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
文摘Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae.
文摘The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK0105)the Major Science and Technology Project of Xizang Autonomous Region(XZ202402ZD0006-06).
文摘Can the“Roof of the world”Mount Qomolangma(MQ)serve as a“natural laboratory”for the activation effect of aerosols on the cloud-precipitation process?Here,we carried out the vertical observations of aerosols,clouds,and precipitation at the MQ,where the dual-radar active remote sensing technique is integrated with precipitation observation for the first time.It is found from the observational study that during the Indian summer monsoon,aerosols from South Asia have a distinct activation effect on the cloud-precipitation process over the MQ.Under dynamic lifting,the increase in aerosols,which inhibits and delays weak precipitation over the MQ,instead intensifies the development of clouds over the MQ,leading to heavy precipitation on the north slope.The synergy of the MQ thermal-dynamic driving mechanism and the aerosol activation effect can trigger the deep convection in the precipitation process on the north slope of the MQ.Cloud development is more intense with the aerosol activation effect,and the diurnal cycle of convective clouds in the vertical change over the MQ presents a lag response to changing aerosols.From the perspective of climate impact on interannual variations,it can also be found that the frequency of light rain over the MQ present the significantly decreased trend,while the frequency of moderate to heavy precipitation on the north slope has a significantly increased trend,revealing the differentiated changes in the precipitation on the south and north slopes of the MQ under the influence of the aerosol activation effect on the cloud-precipitation process.
基金supported by the National Natural Science Foundation of China(Nos.22136003 and 21972073)the Opening foundation of the Engineering Research Center of Ecoenvironment in Three Gorges Reservoir Region,Ministry of Education(No.KF2023-01)the Natural Science Foundation of Yichang City(No.A22-3-005)。
文摘The synergetic technology of hydrodynamic cavitation(HC)and peroxydisulfate(PDS)has been adopted for the treatment of organic pollutants,while the rationale behind the thermal-activation of PDS in this process remains lacking.This paper presented investigation on the degradation of tetracycline under two types of operating conditions,including“internal reaction conditions”(pH value and TC/PDS molar ratio)and“external physical conditions”(hole shape,solution temperature and inlet pressure).Special emphasis was paid on the analysis of thermal effects through a robust modeling approach.The results showed that a synergy index of 6.26 and a degradation rate of 56.71%could be obtained by the HC-PDS process,respectively,when the reaction conditions were optimized.Quenching experiment revealed that·OH and·SO_(4)^(-)were the predominant free radicals and their contribution to the degradation was 75.4%and 24.6%respectively,since a part of·SO_(4)^(-)was transformed into·OH in the solution.The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K,while·OH was generated in the bubble collapse region downstream the hole,where the temperature was much higher and favorable for the cleavage of water molecular.The average temperature under different external physical conditions was in good consistence with the degradation rates.This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.
基金supports from the National Natural Science Foundation of China(Nos.22478426 and 22278436)Young Elite Scientists Sponsorship Program by BAST(No.1101020370359)Science Foundation of China University of Petroleum,Beijing(No.2462021QNXZ009)。
文摘Advanced oxidation processes(AOPs)governed by peroxide activation to produce highly oxidative active species have been extensively explored for environmental remediation.Nevertheless,the low diffusion rates,inadequate interactions of the reactants,and limited active site exposure hinder treatment efficiency.Porous carbocatalysts with high specific surface area,tunable pore size,and programmable active sites demonstrate outstanding performance in activating diverse types of peroxides to generate active species for treatment of aqueous organic pollutants.The pore-rich structures enhance reaction kinetics for peroxide activation by facilitating diffusion of the reactants and their interactions.Additionally,the structural flexibility of porous structures favors the accommodation of highly dispersed metal species and allows for precise tuning of the microenvironment around the active sites,which further enhances the catalytic activity.This review critically summarizes the recent research progress in the applications of engineered porous carbocatalysts for peroxide activation and outlines the prevailing pore construction methods in carbocatalysts.Moreover,engineering strategies to regulate the mass transfer efficiency and fine-tune the microenvironment around the active sites are systematically addressed to enhance their catalytic peroxide activation performances.Challenges and future research opportunities pertaining to the design,optimization,mechanistic investigation,and practical application of porous carbocatalysts in peroxide activation are also proposed.
基金financially supported by the Natural Science Foundation of China(52372226,52202300,62288102,62350013,52303325)National Key Research and Development Program of China(2023YFB3608900)+5 种基金the Postdoctoral Fellowship Program ofthe China postdoctoral Science Foundation(CPSF)(Grant GZC20233506)the China Postdoctoral Science Foundation(Grant2024M764252)the Natural Science Foundation of Chongqing China(2023NSCQ-MSX0097)Guangdong Basic and Applied Basic Research Foundation(2024A1515010918)Shenzhen Science and Technology Program(Grant JCYJ20240813150819026)the Fundamental Research Funds for the Central Universities。
文摘Lead-tin(Pb-Sn)perovskites with an ideal bandgap of 1.34-1.40 eV show great promise in perovskite solar cells(PSCs).Recently,to address the environmental pollution and Sn^(2+)oxidation problems of dimethyl sulfoxide,methylammonium acetate(MAAc)ionic liquid has been developed as an alternative to fabricate ideal bandgap MAPb_(0.7)Sn_(0.3)I_(3)(1.36 eV)film via hot-casting in air.However,the spontaneous crystallization of Pb-Sn perovskite initiated by heat-induced supersaturation is fast and random,setting critical challenges in regulating crystal growth during the film-forming process.Herein,a lattice activation strategy is developed to control the crystallization dynamics of MAPb_(0.7)Sn_(0.3)I_(3)in MAAc to produce films with micrometer-sized grains in air.FA is shown to activate the crystal lattice that facilitates the formation of intermediates and balances the crystal growth of MAPb_(0.7)Sn_(0.3)I_(3),producing films with a grain size of 2.78±0.17μm.Furthermore,4-fluoro-phenethylammonium and phenethylammonium are adopted to passivate the defects in the film and promote the energy level alignment at the top interface,respectively.The optimized PSC device achieved an efficiency of 18.24%with a short-circuit current of 29.84 mA/cm^(2),which are both the highest values in 1.36 eV Pb-Sn PSCs to date.Notably,the unencapsulated devices show excellent storage and air stability under various conditions.
文摘Rotenone is a lipophilic herbicide extensively utilized in experimental neurodegenerative models because of its capacity to disrupt complex I of the mitochondrial electron transport chain.This inhibition results in reduced ATP synthesis,elevated reactive oxygen species(ROS)formation,and mitochondrial malfunction,which instigates oxidative stress and cellular damage,critical elements in neurodegenerative disorders like Parkinson’s disease(PD),amyotrophic lateral sclerosis(ALS),and Alzheimer’s disease(AD).In addition to causing direct neuronal injury,rotenone significantly contributes to the activation of glial cells,specifically microglia and astrocytes.Activated microglia assumes a proinflammatory(M1)phenotype,distinguished by the secretion of inflammatory cytokines including tumor necrosis factor alpha(TNF-α),interleukin 1 beta(IL-1β),and interleukin 6(IL-6),with the generation of nitric oxide and ROS,which exacerbate the neuronal injury.Astrocytes can intensify neuroinflammation by secreting proinflammatory molecules and impairing their neuroprotective roles.Our hypothesis is that rotenone is posited to elicit a neuroinflammatory response via mitochondrial malfunction,ROS generation,and the activation of proinflammatory pathways in microglia and astrocytes.This mechanism leads to accelerated neuronal impair-ment,promoting neurodegeneration.Comprehending the inflammatory pathways activated by rotenone is crucial for pinpointing therapeutic targets to regulate glial responses and mitigate the advancement of neurodegenerative disorders linked to mitochondrial malfunction and chronic inflammation.This review examines the function of glial cells and critical inflammatory pathways,namely Nuclear factor kappaβ(NF-κB),Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin(PI3K/AKT/mTOR),and Wnt/β-catenin signaling pathway in Parkinson’s disease,Alzheimer’s disease,and ALS,emphasizing illness-specific responses and the translational constraints of rotenone-based models.The objective is to consolidate existing understanding regarding the role of rotenone-induced mitochondrial failure in promoting glial activation and neuroinflammation,highlighting the necessity for additional research into these pathways.Despite the prevalent application of rotenone in experimental models,its specific effects on glial-mediated inflammation are inadequately comprehended,necessitating further investigation to guide the formulation of targeted therapeutic strategies.