Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,ho...Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications.In this study,the rapid and efficient enrichment of Anammox bacteriawas achieved by raising the reflux ratio and nitrogen loading rate(NLR)using conventional activated sludge as the inoculant.In the screening phase(days 1–90),the reflux ratio was increased to discharge partial floc sludge,resulting in the relative abundance of Candidatus Brocadiaceae increased from0.04%to 22.54%,which effectively reduced thematrix and spatial competition between other microorganisms and Anammox bacteria.On day 90,the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26,indicating that the Anammox reaction was the primary nitrogen removal process in the system.In the enrichment phase(days 91–238),the NLR increased from 0.43 to 1.20 kgN/(m^(3)·d)and removal efficiency was 71.89%,resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27%on day 180.The reactor operated steadily from days 444 to 498,maintaining the nitrogen removal rate(NRR)of 3.00 kgN/(m^(3)·d)and achieving successful sludge granulation with the particle size of 392.4μm.In short,this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge,supporting to start an Anammox process efficiently.展开更多
Cresyl diphenyl phosphate(CDP),an emerging aryl organophosphate ester(OPE),exhibits potential toxic effects and is frequently found in diverse environmental media,thereby raising concerns about environmental pollution...Cresyl diphenyl phosphate(CDP),an emerging aryl organophosphate ester(OPE),exhibits potential toxic effects and is frequently found in diverse environmental media,thereby raising concerns about environmental pollution.Biodegradation demonstrates substantial potential for CDP removal from the environment.This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge(AnAS).The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d^(-1),and the addition of different electron acceptors affected the degradation rate.High-resolution mass spectrometry identified seven transformation products(TPs)of CDP.The pathways of CDP degradation in anaerobic conditions were proposed,with carboxylation products being the most dominant intermediate products.The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined.The linear discriminant analysis(LDA)of effect size(LEfSe)potentially underscored the pivotal role of Methyloversatilis in CDP biodegradation.Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos.The survival rate,hatching rate,and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS.This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.展开更多
This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits(FG,the involatile portion of suspended solids)and fine debris(FD,the volatile yet ...This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits(FG,the involatile portion of suspended solids)and fine debris(FD,the volatile yet unbiodegradable fraction of suspended solids)within the influent on themixed liquor volatile suspended solids(MLVSS)/mixed liquor suspended solids(MLSS)ratio of an activated sludge system.Through meticulous experimentation,it was discerned that the addition of FG or FD,the particle size of FG,and the concentration of FD bore no substantial impact on the pollutant removal efficiency(denoted by the removal rate of COD and ammonia nitrogen)under constant operational conditions.However,a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L,with smaller FG particle sizes exacerbating this reduction.Additionally,variations in FD concentrations influenced both MLSS andMLVSS/MLSS ratios;a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio,indicating FD accumulation in the system.A predictive model for MLVSS/MLSS was constructed based on quality balance calculations,offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD.This model,validated using data from the BXH wastewater treatment plant(WWTP),showcased remarkable accuracy.展开更多
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaO...[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaOH) on the extraction of EPS was investigated comparatively. The optimal extraction conditions of the most suitable method were determined. [Result] NaOH method is most effective in extracting EPS with less DNA contamination and shortened extraction period. The optimal extraction condition was pH of 11, extraction time of 10 min and agitation speed of 80-120 r/min. [Conclusion] The determined optimal extraction condition provided theoretical basis for EPS study.展开更多
Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewat...Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.展开更多
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. T...The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.展开更多
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag...We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.展开更多
Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 m...Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.展开更多
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal perc...The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.展开更多
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with...Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.展开更多
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH ...The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.展开更多
Two bacterial stains were isolated from the activated sludge and identified as Leucobacter sp. and Alcaligenesfaecalis by 16S rDNA sequencing. Pure cultures of these two strains, representing well or poorly settled ba...Two bacterial stains were isolated from the activated sludge and identified as Leucobacter sp. and Alcaligenesfaecalis by 16S rDNA sequencing. Pure cultures of these two strains, representing well or poorly settled bacteria, were used to investigate the mechanism of bioflocculation in activated sludge. Based on the analyses of the characteristics of cells hydrophobicity, ζ-potential, flocculation ability and extracellular polymeric substance (EPS) composition under different growth stages, it was found that the ratio of cell EPS protein had the highly influence on ζ-potential and hydrophobicity, which were important factors to bioflocculation. Cellulase and Proteinase K could destroy the extracellular biopolymer and resulted in a decrease in the hydrophobicity and ζ-potential. However, in our study, the flocculation characteristics exhibited differently in relation to cellulase and Proteinase K. Flocculation of cells treated with cellulase and Proteinase K decreased sharply, and then recovered quickly in cellulase treatment, while cells treated with Proteinase K showed no sign of recovery. This reveals that the presence of protein in extracellular biopolymer plays an important role to the bioflocculation of cells.展开更多
Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aer...Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.展开更多
The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia...The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.展开更多
Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and the...Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.展开更多
Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work,the adsorption behavior of sulfamethazine(SMN),a commonlyused sulfonamide antibiotic,on activated sludg...Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work,the adsorption behavior of sulfamethazine(SMN),a commonlyused sulfonamide antibiotic,on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6 hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids,while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge,thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures(i.e.,10,20 and 30°C). The partition coefficient(Kd) was determined to be 100.5 L/kg at 20°C,indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well.展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
基金supported by the National Natural Science Foundation of China(No.52070149)Shaanxi Innovative Research Team for Key Science and Technology(No.2023-CXTD-36)+1 种基金Shaanxi Province Key Program for International S&T Cooperation Projects(No.2024GH-ZDXM-04)the Bureau of Science and Technology of Xi’an City of China(No.23SFSF0011).
文摘Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications.In this study,the rapid and efficient enrichment of Anammox bacteriawas achieved by raising the reflux ratio and nitrogen loading rate(NLR)using conventional activated sludge as the inoculant.In the screening phase(days 1–90),the reflux ratio was increased to discharge partial floc sludge,resulting in the relative abundance of Candidatus Brocadiaceae increased from0.04%to 22.54%,which effectively reduced thematrix and spatial competition between other microorganisms and Anammox bacteria.On day 90,the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26,indicating that the Anammox reaction was the primary nitrogen removal process in the system.In the enrichment phase(days 91–238),the NLR increased from 0.43 to 1.20 kgN/(m^(3)·d)and removal efficiency was 71.89%,resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27%on day 180.The reactor operated steadily from days 444 to 498,maintaining the nitrogen removal rate(NRR)of 3.00 kgN/(m^(3)·d)and achieving successful sludge granulation with the particle size of 392.4μm.In short,this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge,supporting to start an Anammox process efficiently.
基金supported by the National Natural Science Foundation of China(Grants No.52270155 and 92047201).
文摘Cresyl diphenyl phosphate(CDP),an emerging aryl organophosphate ester(OPE),exhibits potential toxic effects and is frequently found in diverse environmental media,thereby raising concerns about environmental pollution.Biodegradation demonstrates substantial potential for CDP removal from the environment.This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge(AnAS).The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d^(-1),and the addition of different electron acceptors affected the degradation rate.High-resolution mass spectrometry identified seven transformation products(TPs)of CDP.The pathways of CDP degradation in anaerobic conditions were proposed,with carboxylation products being the most dominant intermediate products.The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined.The linear discriminant analysis(LDA)of effect size(LEfSe)potentially underscored the pivotal role of Methyloversatilis in CDP biodegradation.Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos.The survival rate,hatching rate,and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS.This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.
基金supported by the National Special Project for Science and Technology on Water Pollution Control and Management(No.2017ZX07102-003)the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China(No.2020030257).
文摘This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits(FG,the involatile portion of suspended solids)and fine debris(FD,the volatile yet unbiodegradable fraction of suspended solids)within the influent on themixed liquor volatile suspended solids(MLVSS)/mixed liquor suspended solids(MLSS)ratio of an activated sludge system.Through meticulous experimentation,it was discerned that the addition of FG or FD,the particle size of FG,and the concentration of FD bore no substantial impact on the pollutant removal efficiency(denoted by the removal rate of COD and ammonia nitrogen)under constant operational conditions.However,a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L,with smaller FG particle sizes exacerbating this reduction.Additionally,variations in FD concentrations influenced both MLSS andMLVSS/MLSS ratios;a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio,indicating FD accumulation in the system.A predictive model for MLVSS/MLSS was constructed based on quality balance calculations,offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD.This model,validated using data from the BXH wastewater treatment plant(WWTP),showcased remarkable accuracy.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金Supported by the National High-tech Research and Develop Program of China("863"Program)(2009AA064704)the National Natural Science Foundation of China(51038003)the Program for New Century Excellent Talents in University by the State Education Ministry(NCET-08-161)~~
文摘[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaOH) on the extraction of EPS was investigated comparatively. The optimal extraction conditions of the most suitable method were determined. [Result] NaOH method is most effective in extracting EPS with less DNA contamination and shortened extraction period. The optimal extraction condition was pH of 11, extraction time of 10 min and agitation speed of 80-120 r/min. [Conclusion] The determined optimal extraction condition provided theoretical basis for EPS study.
基金The National Natural Science Foundation of China (No. 50578053) and the Harbin Young Scientist Fund (No. 2003AFXXJ025)
文摘Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.
基金The National New Century Scholarship (No. NCET-05-0387) the France-China P2R Programs and the Specialized Research Fundfor the Doctoral Program of Higher Education (No. 20050247016)
文摘The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.
基金supported by the Key Projects in National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAC19B01-02)the Mega-projects of Science Research for Water (No.2008ZX07313-3)the Program of Introducing Talents of Discipline to Universities
文摘We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.
文摘Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.
文摘The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z326)the Programfor New Century Excellent Talents(06-0373)in University
文摘Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.
基金supported by the Hi-TechResearch and Development Program (863) of China(No. 2007AA06Z326)the Key Projects of National Wa-ter Pollution Control and Management of China (No.2008ZX07315-003, 2008ZX07316-002)the Key Lab-oratory of Environmental Science and Engineering ofJiangsu Province (No. ZD071201).
文摘The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.
基金supported by the National Natural Science Foundation of China(No. 20977031)the Natural Science Foundation of Shanghai(No. 09zr1409000)+2 种基金the Research Initiatives of the University of Hong Kong(2006)the Royal Society of New Zealand(ISAT B09-33)Faculty of Health & Environmental Sciences,Auckland University of Technology
文摘Two bacterial stains were isolated from the activated sludge and identified as Leucobacter sp. and Alcaligenesfaecalis by 16S rDNA sequencing. Pure cultures of these two strains, representing well or poorly settled bacteria, were used to investigate the mechanism of bioflocculation in activated sludge. Based on the analyses of the characteristics of cells hydrophobicity, ζ-potential, flocculation ability and extracellular polymeric substance (EPS) composition under different growth stages, it was found that the ratio of cell EPS protein had the highly influence on ζ-potential and hydrophobicity, which were important factors to bioflocculation. Cellulase and Proteinase K could destroy the extracellular biopolymer and resulted in a decrease in the hydrophobicity and ζ-potential. However, in our study, the flocculation characteristics exhibited differently in relation to cellulase and Proteinase K. Flocculation of cells treated with cellulase and Proteinase K decreased sharply, and then recovered quickly in cellulase treatment, while cells treated with Proteinase K showed no sign of recovery. This reveals that the presence of protein in extracellular biopolymer plays an important role to the bioflocculation of cells.
基金Supported by the Shanghai Committee of Education (07ZZ158)
文摘Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.
文摘The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.
基金This work was supported by the China Postdoctoral Science Foundation(No.20060390060).
文摘Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.
基金financially supported by the National Natural Science Foundation of China (Nos.21107127 and 51221892)the Ministry of Housing and Urban–rural Development of China (No.2012ZX07313-001-07)the State Key Laboratory of Environmental Aquatic Chemistry (No.10Y06ESPCR)
文摘Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work,the adsorption behavior of sulfamethazine(SMN),a commonlyused sulfonamide antibiotic,on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6 hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids,while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge,thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures(i.e.,10,20 and 30°C). The partition coefficient(Kd) was determined to be 100.5 L/kg at 20°C,indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well.
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.