期刊文献+
共找到21,717篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
1
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
Tuning surface functional groups and crystallinity in activated carbon for high-voltage lithium-ion capacitors
2
作者 AN Ya-bin SUN Yu +5 位作者 ZHANG Ke-liang LI Chen SUN Xian-zhong WANG Kai ZHANG Xiong MA Yan-wei 《新型炭材料(中英文)》 北大核心 2025年第5期1085-1097,I0019-I0021,共16页
Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operati... Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs. 展开更多
关键词 activated carbon Lithium-ion capacitors Surface functional groups Microcrystalline domains High-voltage cathod
在线阅读 下载PDF
Characterization of gaseous products and activated chars from pyrolysis of sewage sludge in the presence of activating agent
3
作者 Yuwen Zhu Jian Liu +5 位作者 Ting Li Xinrui Su Qian Dai Chang Xu Xuening Zhao Hanqiao Liu 《Chinese Journal of Chemical Engineering》 2025年第9期260-269,共10页
Sewage sludge(SS)and SS impregnated with activating agents(ZnCl_(2) and KOH)were pyrolyzed in a fixed-bed reactor to produce gaseous fuel and activated char.The effects of heating rate,pyrolysis temperature and activa... Sewage sludge(SS)and SS impregnated with activating agents(ZnCl_(2) and KOH)were pyrolyzed in a fixed-bed reactor to produce gaseous fuel and activated char.The effects of heating rate,pyrolysis temperature and activator type on gas yields,pore structure and adsorption properties of activated char were systematically studied.The results demonstrated that increasing the pyrolysis temperature from 450℃ to 850℃ propo rtionally enhanced H_(2) and CO yields from the rapid pyrolysis of SS,while CH_(4) yield showed minimal variation between 650℃ and 850℃.ZnCl_(2) notably increased the CO yield,reaching71.9 ml·g^(-1)at 850℃,but caused a marked reduction in CH_(4) yield under the tested conditions.Similarly,KOH promoted CO yield at 750℃ and 850℃,with minimal impact on CH_(4) production.Both activators facilitated higher H_(2) yields in the range of 450-550℃,while the maximum H_(2) yield(109.8 ml·g^(-1))was observed at 850℃ in the absence of activator.The activated char derived from ZnCl_(2)-assisted pyrolysis exhibited well-developed micro-and mesopore structures,with specific surface areas ranging from 188.2 to 54.1 m^(2)·g^(-1)across pyrolysis temperatures of 450-850℃.When evaluated as adsorbents for methylene blue removal,activated char with greater specific surface area and total pore volume exhibited superior adsorption capacity.The adsorption process was well-described by the pseudo-second-order kinetic model. 展开更多
关键词 Sewage sludge Pyrolysis temperature Activating agent Pyrolysis gas activated char
在线阅读 下载PDF
Adsorption of typical NDMA precursors by superfine powdered activated carbon:Critical role of particle size reduction
4
作者 Ying Wang Zhichen Zhang +3 位作者 Zhihang Yin Jun Wang Xiaojian Zhang Chao Chen 《Journal of Environmental Sciences》 2025年第1期101-113,共13页
Control of N-nitrosodimethylamine(NDMA)in drinking water could be achieved by removing its precursors as one practical way.Herein,superfine powdered activated carbons with a diameter of about 1μm(SPACs)were successfu... Control of N-nitrosodimethylamine(NDMA)in drinking water could be achieved by removing its precursors as one practical way.Herein,superfine powdered activated carbons with a diameter of about 1μm(SPACs)were successfully prepared by grinding powdered activated carbon(PAC,D50=24.3μm)and applied to remove model NDMA precursors,i.e.ranitidine(RAN)and nizatidine(NIZ).Results fromgrain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size,and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ.Moreover,kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path.Furthermore,performance comparison experiments suggested that the removal of RAN and NIZ(C_(0)=0.5 mg/L)could reach 61.3%and 60%,respectively,within 5 min,when the dosage of SAPC-1.1(D_(50)=1.1μm)was merely 5 mg/L,while PAC-24.3 could only eliminate 17.5%and 18.6%.The adsorption isotherm was well defined by Langmuir isotherm model,indicating that the adsorption of RAN/NIZ was a monolayer coverage process.The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent,and high adsorption capacity could be observed under the condition of pH>pk_(a)+1.The coexistence of humic acid(HA)had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously.The coexistence of anions had little effect on the adsorption also.This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA. 展开更多
关键词 ADSORPTION NDMA KINETICS Superfine powdered activated carbon Intraparticle diffusion Drinking water
原文传递
Strategies for efficient enrichment of anaerobic ammonia oxidizing bacteria in activated sludge
5
作者 Bin Tang Jin Wang +1 位作者 Xingdong Gao Zhihua Li 《Journal of Environmental Sciences》 2025年第5期703-713,共11页
Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,ho... Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications.In this study,the rapid and efficient enrichment of Anammox bacteriawas achieved by raising the reflux ratio and nitrogen loading rate(NLR)using conventional activated sludge as the inoculant.In the screening phase(days 1–90),the reflux ratio was increased to discharge partial floc sludge,resulting in the relative abundance of Candidatus Brocadiaceae increased from0.04%to 22.54%,which effectively reduced thematrix and spatial competition between other microorganisms and Anammox bacteria.On day 90,the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26,indicating that the Anammox reaction was the primary nitrogen removal process in the system.In the enrichment phase(days 91–238),the NLR increased from 0.43 to 1.20 kgN/(m^(3)·d)and removal efficiency was 71.89%,resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27%on day 180.The reactor operated steadily from days 444 to 498,maintaining the nitrogen removal rate(NRR)of 3.00 kgN/(m^(3)·d)and achieving successful sludge granulation with the particle size of 392.4μm.In short,this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge,supporting to start an Anammox process efficiently. 展开更多
关键词 ANAMMOX activated sludge ENRICHMENT Nitrogen removal Strategy
原文传递
Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors
6
作者 Yilin Wang Shijie Li +3 位作者 Jianhui Qi Hui Li Kuihua Han Jianli Zhao 《Chinese Journal of Chemical Engineering》 2025年第1期81-92,共12页
High electrochemical performance supercapacitors require activated carbon with high specific surface area,suitable pore size distribution and surface properties,and high electrical conductivity as electrode materials,... High electrochemical performance supercapacitors require activated carbon with high specific surface area,suitable pore size distribution and surface properties,and high electrical conductivity as electrode materials,whereas there exists a trade-off relationship between specific surface area and electrical conductivity,which is not well met by a single type of carbon source.To solve this problem,the coal and sargassum are adopted to obtain the coupling product via co-thermal dissolution,followed by carbonization and KOH activation.The effects of mixing mass ratio and activation temperature on the prepared activated carbon(AC)are investigated using single factor experimental method.The experimental results show that AC_(1/3-800)has abundant micropore and mesopore content,good pore structure connectivity,high electrical conductivity and good wettability,and superior electrochemical properties compared with other activated carbons prepared in this experiment.Its total specific surface area is up to 2098.5 m^(2)·g^(-1),the pore volume is up to 1.33 cm^(3)·g^(-1),the content of mespores with diameter of 6-8 nm is significantly increased,and the pore size distribution is wide and uniform.When the current density increases from 0.1 to 10 A·g^(-1),the gravimetric capacitance decreases from 219 to 186 F·g^(-1)with a capacitance retention of 84.9%,the equivalent series resistance is very small,and the rate performance and reversibility of charging and discharging have also been excellent. 展开更多
关键词 COAL SARGASSUM Co-thermal dissolution activated carbon SUPERCAPACITOR Electrochemical performance
在线阅读 下载PDF
Modelling and prediction of toluene adsorption saturation basing on characteristic values of activated carbons
7
作者 Quanli Ke Yedong Xiong +9 位作者 Mei Lu Kangkang Huang Yiting Guo Jiong Min Chuanmin Jin Zhenyu Gu Guokai Cui Xiaole Weng Bingzhi Yi Hanfeng Lu 《Journal of Environmental Sciences》 2025年第6期302-312,共11页
Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the cha... Herein,the association between the dynamic adsorption capacity of toluene and several important characteristic values on activated carbon(AC)samples was investigated by multidimensional linear regression.Among the characteristic values,the carbon tetrachloride(CTC)adsorption value has demonstrated relatively stronger correlation with the toluene adsorption capacity on AC sampleswith diverse sources and forms,particularly in exposure to high-concentration toluene.Notably,the relevance of the toluene adsorption capacity to the CTC value could also be extended to a series of other porous adsorbents,which proved the wide applicability of CTC value in characterizing the adsorption behaviors.Based on these results,a mathematical and visual model was then established to predict the toluene adsorption saturation under different conditions(inlet concentration,adsorption time,initial CTC value,etc.)on diverse AC samples,of which the accuracy has later been verified by experimental data.As such,a fast and accurate estimation of the adsorption behaviors over AC samples,and possibly other porous adsorbents,was realized. 展开更多
关键词 activated carbon ADSORPTION Characteristic values Toluene saturation MODELLING
原文传递
Efficient design of non-shrinkage xerogels via metal coordination and triazine steric hindrance for activated carbon xerogels with interconnected hierarchical structure
8
作者 Kunming Li Xuepeng Ni +4 位作者 Dong Li Jiaoli Hu Huifang Chen Yonggen Lu Anqi Ju 《Journal of Materials Science & Technology》 2025年第3期153-163,共11页
Designing xerogels at the molecular level to overcome volume shrinkage is a promising strategy for carbon xerogels with desirable structure and performance.Here,we design a xerogel with non-shrinkage by introducing Zn... Designing xerogels at the molecular level to overcome volume shrinkage is a promising strategy for carbon xerogels with desirable structure and performance.Here,we design a xerogel with non-shrinkage by introducing ZnCl_(2) into resorcinol-melamine-formaldehyde polymerization.The gel network consisting of micrometer pores and large particles(0.26-1.35μm)is constructed by the coordination of Zn^(2+) with oxygen/nitrogen-containing groups,which is attributed to the structural support of the rigid triazine skeleton with large steric hindrance.Therefore,the reinforced gel network possesses enough strength to withstand capillary forces during atmospheric drying,and special drying and solvent exchange are avoided.The xerogels show non-shrinkage and a short preparation time of 24 h.The resulted activated carbon xerogels with interconnected hierarchically micro-meso-macropores exhibit an optimal specific surface area of 1520 m^(2)/g(through xerogels pyrolysis and the pore-forming of ZnCl_(2)),high adsorption(methylene blue,I-,Cu^(2+),etc.),and repeated adsorption ability.This work provides novel thought for porous nanomaterials with non-shrinkage and desirable structures in adsorption and energy storage. 展开更多
关键词 XEROGELS Non-shrinkage Resorcinol-melamine-formaldehyde Zinc chloride activated carbon xerogels
原文传递
Efficient construction of low shrinkage xerogels via coordination-catalyzed in-situ polymerization for activated carbon xerogels with multi-dyes adsorption
9
作者 Kunming Li Xuepeng Ni +5 位作者 Dong Li Jiaoli Hu Yanjin Dang Huifang Chen Yonggen Lu Anqi Ju 《Nano Materials Science》 2025年第5期674-685,共12页
Obtaining large specific surface areas(SSA)for carbon xerogels poses a significant challenge due to the inevitable volume shrinkage of xerogel.Here,the Zn^(2+) coordination-catalyzed in-situ polymerization approach wa... Obtaining large specific surface areas(SSA)for carbon xerogels poses a significant challenge due to the inevitable volume shrinkage of xerogel.Here,the Zn^(2+) coordination-catalyzed in-situ polymerization approach was proposed to fabricate xerogels with a low shrinkage of 13.03% and a short preparation period of 24 h.In resorcinolformaldehyde(RF)polymerization,ZnCl_(2) could accelerate the reaction kinetics through the coordination of the Zn^(2+) and hydroxyl groups.The gel network with adjustable RF particles(46.5 nm-1.89μm)and narrow neck structures was constructed by changing ZnCl_(2) and ethanol contents,which could resist volume shrinkage during atmospheric drying without solvent exchange.The activated carbon xerogels(ACXs)with hierarchical structure were designed by one-step carbonization/activation due to the pore-forming of ZnCl_(2).The obtained ACXs showed a large SSA of 1689 m^(2)/g,multi-dyes adsorption capacity(methylene blue,Congo red,methyl orange,and Sudan Ⅲ were 625.90,359.46,320.69,and 453.92 mg/g,respectively),and reusability of 100%.The maximum monolayer MB adsorption capacity was 630.28 mg/g.This work presents an efficient strategy to design porous nanomaterials with low shrinkage and large SSA,which illustrates promising applications in separation,adsorption,and photoelectric catalysis. 展开更多
关键词 Coordination-catalyzed Resorcinol-formaldehyde Low shrinkage activated carbon xerogels ADSORPTION
在线阅读 下载PDF
Performance of high-energy storage activated carbon derived from olive pomace biomass as an anode material for sustainable lithium-ion batteries
10
作者 Imad Alouiz Mohamed Aqil +2 位作者 Mouad Dahbi Mohamed Yassine Amarouch Driss Mazouzi 《Resources Chemicals and Materials》 2025年第2期24-35,共12页
In this work,we investigate how activated carbon(AC)derived from olive pomace biomass can be used as an anode material in lithium-ion batteries.The biomass-derived activated carbon has the potential to be highly effic... In this work,we investigate how activated carbon(AC)derived from olive pomace biomass can be used as an anode material in lithium-ion batteries.The biomass-derived activated carbon has the potential to be highly efficient,deliver high performance,sustainable,and cost-effective in LIBs-related production.The activated carbon is prepared by using H3PO4 as a chemical activation agent,and then calcining the obtained product at 500℃ for different controlled atmospheres under(i)air(AC-Atm),(ii)vacuum(AC-Vac),and(iii)argon(ACArg).The different samples were systematically analyzed using scanning electron microscopy(SEM),Highresolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),X-ray fluores-cence(XRF),X-ray diffraction(XRD),FT-IR and Raman spectroscopy,and thermogravimetric analysis(TGA)to assess their properties.The electrochemical properties of the carbonaceous materials were studied by galvano-static cycling,cyclic voltammetry(CV),and electrochemical impedance spectroscopy(EIS).The results showed high specific capacity and stable cycling performance,with capacities of 288,184,and 56 mAh g^(-1) at the current density of 25 mA g^(-1) after 70 cycles for AC-Arg,AC-Vac,and AC-Atm respectively.Furthermore,the CE efficiency was nearly 100%from the first cycles.This study opens up interesting prospects and offers promising oppor-tunities for more efficient recovery of unused olive pomace waste,by integrating it into energy storage appli-cations,particularly sustainable lithium-ion batteries. 展开更多
关键词 Olive pomace activated carbon Energy storage Anode Lithium-ion battery
在线阅读 下载PDF
Ammonium Persulfate Modified Activated Carbon for Adsorption of Acrylate VOCs
11
作者 HU Zhengsheng TANG Xu +4 位作者 GAO Shilong LI Yingguang WANG Jiawei CHEN Yanjun WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1176-1185,共10页
Modified activated carbons(AS)were fabricated through the oxidation effect of ammonium persulfate and applied to the dynamic adsorption of different acrylate gas.The pore structures,surface chemical properties and sur... Modified activated carbons(AS)were fabricated through the oxidation effect of ammonium persulfate and applied to the dynamic adsorption of different acrylate gas.The pore structures,surface chemical properties and surface morphology of AS were respectively characterized by N2 adsorption,Boehm titration,X-ray Photoelectron Spectroscopy(XPS)and scanning electron microscopy(SEM)techniques.After modification,the specific surface area increased from 954 to 1154 m^(2)·g^(-1).The contents of oxygen-containing functional groups on the AS surface increase obviously and have a great effect on the adsorption behavior of acrylate gases.According to the results of dynamic adsorption,the adsorption capacities of acrylates are as the following order:methyl acrylate(461.9 mg·g^(-1))>methyl methacrylate(436.9 mg·g^(-1))>butyl acrylate(381.8 mg·g^(-1)),which is attributed to the size adaptability of AS pores and acrylates.The adsorption behavior of AS for acrylate gases conforms to the Bangham model and the Temkin model. 展开更多
关键词 activated carbon ammonium persulfate ACRYLATE ADSORPTION
原文传递
Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge:Degradation characteristics,microbial community succession,and toxicity assessment
12
作者 Chen-xue Jiang Ying Li +5 位作者 Chi Yao Jing Li Ke Jing Sui-sui Zhang Cheng Liu Lian-fang Zhao 《Water Science and Engineering》 2025年第1期41-50,共10页
Cresyl diphenyl phosphate(CDP),an emerging aryl organophosphate ester(OPE),exhibits potential toxic effects and is frequently found in diverse environmental media,thereby raising concerns about environmental pollution... Cresyl diphenyl phosphate(CDP),an emerging aryl organophosphate ester(OPE),exhibits potential toxic effects and is frequently found in diverse environmental media,thereby raising concerns about environmental pollution.Biodegradation demonstrates substantial potential for CDP removal from the environment.This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge(AnAS).The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d^(-1),and the addition of different electron acceptors affected the degradation rate.High-resolution mass spectrometry identified seven transformation products(TPs)of CDP.The pathways of CDP degradation in anaerobic conditions were proposed,with carboxylation products being the most dominant intermediate products.The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined.The linear discriminant analysis(LDA)of effect size(LEfSe)potentially underscored the pivotal role of Methyloversatilis in CDP biodegradation.Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos.The survival rate,hatching rate,and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS.This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants. 展开更多
关键词 Cresyl diphenyl phosphate Anaerobic activated sludge BIODEGRADATION Microbial community TOXICITY
在线阅读 下载PDF
Seeking breakthroughs in advanced oxidation processes for waste activated sludge dewatering:A critical review of developments,bibliometrics and sustainable solutions
13
作者 Xinwen Li Lili Li +6 位作者 Junqiu Jiang Wangyang Mei Zhaoxia Wang Qingwei Gao Huimin Zhou Liangliang Wei Qingliang Zhao 《Chinese Chemical Letters》 2025年第11期14-24,共11页
As a key step in waste activated sludge(WAS)treatment and disposal,WAS dewatering can minimize the amount of WAS and decrease the costs of transportation,storage management,treatment,and disposal.Advanced oxidation pr... As a key step in waste activated sludge(WAS)treatment and disposal,WAS dewatering can minimize the amount of WAS and decrease the costs of transportation,storage management,treatment,and disposal.Advanced oxidation processes(AOPs)have been widely explored in WAS dewatering due to the excellent oxidizing properties and efficient decomposition capacity since the 21^(st)century.This review outlined the mechanisms of AOPs to improve WAS dewatering and pointed out the shortcomings of the existing mechanisms.Then,the applications of AOPs-based WAS dewatering processes for enhanced WAS dewatering were reviewed,and the intrinsic limitations of AOPs-based WAS dewatering processes in engineering applications were proposed.In addition,an overall review of AOPs-based WAS dewatering researches was also conducted through bibliometric analysis,and future research hotspots in the field of AOPs-based WAS dewatering were proposed.Finally,the positive effects of the AOPs-based WAS dewatering processes on pollutant removal and resource recovery were investigated,and an integrated plan for the harmless disposal of WAS was constructed to achieve a positive reform of the traditional WAS management plan.This review provided theoretical basis and technical reference for the development of efficient,economical,and environmental AOPs for enhanced WAS dewatering to facilitate the application of AOPs in actual WAS dewatering engineering. 展开更多
关键词 Waste activated sludge AOPS DEWATERING Bibliometric analysis Extracellular polymeric substances
原文传递
Investigation into enhanced performance of toluene and Hg^(0) stimulative abatement over Cr-Mn oxides co-modified columnar activated coke
14
作者 Jiajie Wang Jie Liu +7 位作者 Lei Gao Dong Xie Caiting Li Liping Xiang Huiyu Xiong Jiaqi Xie Tianren Zhang Yueguo Pan 《Journal of Environmental Sciences》 2025年第2期88-106,共19页
In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,... In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2). 展开更多
关键词 TOLUENE Element mercury Cr-Mn oxides activated coke
原文传递
Modification of dispersive soil by physical adsorption method using activated carbon
15
作者 Henghui Fan Guanzhou Ren +5 位作者 Dongyang Yan Peng Ju Tao Wu Yuan Gao Zhen Zhu Gaowen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1213-1226,共14页
This study addresses the challenges posed by dispersive soil in various engineering fields,including hydraulic and agricultural engineering,by exploring the effects of physical adsorption on soil modification.The prim... This study addresses the challenges posed by dispersive soil in various engineering fields,including hydraulic and agricultural engineering,by exploring the effects of physical adsorption on soil modification.The primary objective is to identify an environmentally friendly stabilizer that can alleviate cracking and erosion resulting from soil dispersivity.Activated carbon(AC),known for its porous nature,was examined for its potential to enhance soil strength and erosion resistance.The charge neutralization process was evaluated by monitoring pH and conductivity,in addition to a comprehensive analysis of microscopic and mineral properties.The results show that high sodium levels or low clay contents result in the dispersive nature of soil in water.However,the incorporation of AC can transform such soil into a non-dispersive state.Moreover,both soil strength and erosion resistance exhibited enhancements with increasing AC content and curing duration.The incorporation of AC resulted in a maximum 5.6-fold increase in unconfined compressive strength and a 1.8-fold increase in tensile strength for dispersive soil.Notably,a significant correlation was observed during the curing phase among soil dispersivity,mechanical properties,and pH values.Microscopic analyses revealed that the porous structure of AC facilitated a filling effect and enhanced adsorption capacity,which contributed to improved soil characteristics and reduced dispersivity.The release of hydrogen ions and the formation of aggregates promote water stability.Validation tests conducted on dispersive soil from northern Shaanxi demonstrated the efficacy of physical adsorption using AC as a viable method for modifying dispersive soil in the water conservancy hub. 展开更多
关键词 Dispersive soil Physical adsorption activated carbon(AC) Improved behavior MECHANISM
在线阅读 下载PDF
A PDI-based NIR-Ⅱfluorescence imaging guided molecular phototheranostic platform for GSH-triggered gas therapy,mild photothermal therapy and NIR-activated photodynamic therapy
16
作者 Wei Zhou Di He +5 位作者 Ning Liu Ying Li Wenzhao Han Weiping Zhou Siyu Zhang Cong Yu 《Chinese Chemical Letters》 2025年第11期394-400,共7页
Synergistic therapy using multiple modalities is a highly promising therapeutic strategy.Near-infrared-Ⅱ(NIR-Ⅱ)fluorescence imaging,with its deep penetration and high fidelity,has frequently been employed in the lit... Synergistic therapy using multiple modalities is a highly promising therapeutic strategy.Near-infrared-Ⅱ(NIR-Ⅱ)fluorescence imaging,with its deep penetration and high fidelity,has frequently been employed in the literature to guide and assist treatment.Herein,we report the development of a NIR-Ⅱfluorescence imaging guided multi-therapy platform PDI-DS NPs,which integrates a novel activatable phototheranostic agent PDI-DBU,a H_(2)S donor DPS and an amphiphilic polymer DSPE-m PEG2000.In order to maximize redshift of absorption and emission of PDI derivatives,we introduced an electron donating group DBU on PDI to obtain PDI-DBU.PDI-DBU exhibits a distinct absorption band at 700-900 nm and demonstrates excellent NIR-Ⅱfluorescence emission/imaging properties and good photothermal effects under 808 nm laser irradiation.More importantly,under 808 nm laser irradiation,PDI-DBU could be oxidized,and the photodynamic effect of the material could be subsequently activated under 530 nm laser irradiation,achieving the combination of photothermal and activatable photodynamic dual modality treatment.The H_(2)S donor DPS,when triggered by the abundant glutathione(GSH)within the tumor microenvironment(TME),is capable of generating H_(2)S.On one hand,H_(2)S can inhibit tumor growth by disrupting mitochondrial function,on the other hand,it can also repress the expression of heat shock protein 90(HSP90),thereby reversing tumor cell resistance mechanism against photothermal therapy.The utilization of PDI-DS NPs combined with DPS for efficient tumor ablation has been successfully demonstrated both in vitro and in vivo.This synergistic therapeutic platform thus offers a promising strategy in the field of NIR-Ⅱfluorescence imaging guided tumor therapy. 展开更多
关键词 Perylene diimide probe NIR-II fluorescence Imaging-guided therapy Gas therapy Photothermal therapy NIR activated photodynamic therapy
原文传递
Surface modification of high Cu-loaded activated carbon fiber adsorbent by air plasma
17
作者 Bei Huang Xinyu Yang +3 位作者 Shilin Song Shuangyan Zi Yixing Ma Kai Li 《Journal of Environmental Sciences》 2025年第8期402-414,共13页
The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor... The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor(BET)result showed that the specific surface area of the adsorbent after air plasma modification was almost three times that before modification.X-ray photoelectron spectroscopy(XPS)findings revealed that the amino group was added to the adsorbent's surface,increasing lattice oxygen and chemisorbed oxygen.The adsorbent's large specific surface area,excellent surface active oxygen,and abundance of basic groups facilitate PH_(3)and H_(2)S adsorption and oxidation.The scanning electron microscopy showed that air plasma modification exposed more active components and uniformly dispersed them on the surface of adsorbent,thereby improving the adsorption performance.Activity evaluation results showed that the adsorbent has the best ability to capture PH_(3)and H_(2)S after being modified by air plasma at 4 kV voltage for 10 min.The adsorbent's breakthrough ability at high space velocity(WHSV:60,000 h^(−1))is 190 mg P/g and 146 mg S/g,respectively,which is 74%and 60%greater than that before modification.This is a great improvement over previous studies.In addition,the possible mechanism of adsorbent deactivation was proposed. 展开更多
关键词 Air-plasma activated carbon fiber Specific surface area Functional group
原文传递
Methodology for estimating external radiation dose exposed to deposited activated tungsten dust in the soil
18
作者 Feng-Die Wang Bao-Jie Nie +2 位作者 Yu-Xuan Wang De-Yi Chen De-Zhong Wang 《Nuclear Science and Techniques》 2025年第9期226-235,共10页
Tungsten is considered the most promising plasma-facing material for fusion reactors with exceptional performance.Under certain conditions,activated tungsten dust can be generated through plasma–wall interactions and... Tungsten is considered the most promising plasma-facing material for fusion reactors with exceptional performance.Under certain conditions,activated tungsten dust can be generated through plasma–wall interactions and released into the atmosphere.Activated tungsten migrates downward in the soil after atmospheric deposition.However,effective methods for evaluating the environmental dose of gamma rays emitted by activated tungsten are still lacking.Consequently,a method for evaluating the air-absorbed dose rate of activated tungsten dust was proposed considering soil attenuation.Key parameters including the mass attenuation coefficient and energy absorption build-up factor were determined for the main gamma ray energies of radionuclides within the activated tungsten dust.Additionally,air-absorbed dose rates were calculated by assuming that radioactive sources were located at different soil depths and radii.It was found that a soil depth of 50 cm significantly attenuated the environmental dose by 99.9%,whereas the air-absorbed dose rates within the horizontal distance of 500 cm accounted for 91%of the total dose rate.Therefore,this study underscored the importance of soil attenuation in environmental dose assessments,which must be carefully re-examined for the safety analysis of fusion reactors. 展开更多
关键词 Fusion reactor activated tungsten dust Soil attenuation Air-absorbed dose rates Monte Carlo method
在线阅读 下载PDF
Proteomic mechanism of Bacillus cereus endospore against plasma-activated water(PAW)
19
作者 Xiao Hu Jinsong Feng +2 位作者 Xinyu Liao Tian Ding Ruiling Lü 《Food Science and Human Wellness》 2025年第5期1657-1673,共17页
Plasma-activated water(PAW) indicated promising potential in controlling the biological contamination of Bacillus cereus,which eliminated its evolutionary endospore that improves its survival ability.However,the spore... Plasma-activated water(PAW) indicated promising potential in controlling the biological contamination of Bacillus cereus,which eliminated its evolutionary endospore that improves its survival ability.However,the spore inactivation mechanism by PAW at molecular level was not well understood.The mechanism of the B.cereus endospore against PAW at proteomic levels was demonstrated.The Tandem Mass Tag(TMT) labeling was performed.By comparing the treatment groups with control(including PAW and PAW added superoxide dismutase(SOD)),the expression of 251 proteins(with the number of 207 up-and 44 down-regulated) and 379 proteins(with the corresponding number of 238 and 141) were drastically affected,separately.The 6 categories based on the protein-protein interaction(PPI) networks included oxidation-reduction,transport,sporulation and DNA topological change,gene expression,metabolism,and others.The 3 dehydrogenases(genes hisD,BC_2176,and asd) in PAW while oxidoreductase(genes BC_0399 and BC_2529) in SOD were activated to maintain the antioxidation of spores.The proteins(BC_4271 and BC_2655) in SOD were dramatically activated,which were involved in the carbohydrate,amino acid,and energy-coupling transport.All the small,acid-soluble spore proteins were activated in both groups to protect the spores' DNA.In SOD,genes metG2 and rpmC also were considered important factors in translation while this role was played in gene groES but not rpmF in PAW.The PAW activated the biogenesis of cell wall/membrane/envelope and phosphorelay signal transduction system to contribute to the survival of spores whereas the SOD damaged these 2 processes as well as cell division,chromosome separation,organic acid phosphorylation,base-and nucleotide-excision repairs to lead to the death of spores.This would promise to lay the foundation for advancing the study of the intrinsic mechanism of spore killing against PAW and can also provide a reference for future verification. 展开更多
关键词 Bacillus cereus endospores Plasma activated water Key genes Differentially expressed proteins Protein-protein interaction
在线阅读 下载PDF
QSAR Model of Activated Carbon Adsorption Based on Langmuir Adsorption Isotherm
20
作者 TAN Ting WEI Qunshan +5 位作者 LIU Qiong SHEN Zhemin SONG Xinshan WANG Yuhui CHARLES Nzila CHRISTOPHER W.K.Chow 《Journal of Donghua University(English Edition)》 2025年第6期628-638,共11页
From a quantum chemistry standpoint,the impact of the structural properties of the compounds on activated carbon’s adsorption ability was specifically investigated.The compounds whose adsorption behavior followed the... From a quantum chemistry standpoint,the impact of the structural properties of the compounds on activated carbon’s adsorption ability was specifically investigated.The compounds whose adsorption behavior followed the Langmuir isotherm model were selected as the research objects.An optimal quantitative structure-activity relationship(QSAR)model was built by using the multiple linear regression(MLR)method,with the saturation adsorption capacity Q_(m) from the Langmuir adsorption isotherm as the response variable and the structural parameters of 50 organic compounds as independent variables.The results show that the optimal model exhibits good stability,reliability and robustness,with a regression coefficient R^(2)of 0.88,an adjusted regression coefficient R_(adj)^(2) of 0.87,an internal validation coefficient q^(2) of 0.81,and an external validation coefficient Q_(ext)^(2) of 0.68.The variables included in the optimal model indicate that the polarity of the molecule,the molecular potential energy,and the stability and bonding strength of the organic compound are the main factors affecting the adsorption on activated carbon.The results provide key information for predicting the adsorption capacity of organic compounds on activated carbon and offer a theoretical reference for adsorption treatment in water environments. 展开更多
关键词 quantitative structure-activity relationship(QSAR) ADSORPTION activated carbon multiple linear
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部