期刊文献+
共找到69,188篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and Properties of Polyacrylamide/Sodium Alginate Hydrogel and the Effect of Fe^(3+)Adsorption on Its Mechanical Performance 被引量:2
1
作者 Zheng Cao Yang Zhang +7 位作者 Keming Luo Yinqiu Wu Hongxin Gao Junfeng Cheng Chunlin Liu Guoliang Tao Qingbao Guan Lei Zhang 《Journal of Renewable Materials》 SCIE EI 2021年第8期1447-1462,共16页
The preparation and application of functional hydrogels based on natural polysaccharides have always been a hot research topic.In this study,using acrylamide(AM)monomer,N,N'-methylene bisacrylamide(MBA)as crosslin... The preparation and application of functional hydrogels based on natural polysaccharides have always been a hot research topic.In this study,using acrylamide(AM)monomer,N,N'-methylene bisacrylamide(MBA)as crosslinking agent,potassium persulfate(K2S2O8)as initiator,in the presence of natural polysaccharide sodium alginate(SA),the PAM/SA hydrogel was prepared by free radical polymerization.Fourier transform infrared spectroscopy(FT-IR),swelling performance tests,scanning electron microscope(SEM),thermogravimetric analysis(TGA),UV-visible spectrophotometer,mechanical property measurements were carried out to analyze the composition,morphology,and performance of the hydrogels.The swelling behavior,dye adsorption performance,and the mechanical properties of PAM/SA hydrogels before and after Fe^(3+)adsorption were studied.The experimental results showed that the introduction of SA with 4.7%,7.8%,and 10.3%effectively improved the mechanical and dye adsorption properties of PAM composite hydrogels.The adsorption capacity of PAM/4.7%SA and PAM/10.3%SA hydrogels at equilibrium can reach 40.01 and 44.02 mg/g for methylene blue,which is higher than the value 13.58 mg/g of pure PAM hydrogel.The compressive strength of pure PAM hydrogel is 0.124 MPa.When the SA content is 4.7%,7.8%,and 10.3%,the compressive strength of the PAM/SA hydrogel was corresponding to 0.130 MPa,0.134 MPa,and 0.152 MPa,respectively.Fe^(3+)was introduced into the PAM/SA hydrogels,and PAM/SA/Fe^(3+)double-network hydrogels with excellent mechanical properties could be prepared by adjusting the SA content(4.7%,7.8%,and 10.3%),soaking time(1 h,2 h,3 h,4 h,5 h,6 h),and Fe^(3+)concentration(4.76%,7.41%,9.09%,and 13.04%).Under the same Fe^(3+)concentration of 9.09%and adsorption time of 4 h,the compressive strengths of the PAM/4.7%SA,PAM/7.8%SA,and PAM/10.3%SA hydrogels could reach 0.354 MPa,0.767 MPa,and 0.778 MPa,respectively. 展开更多
关键词 sodium alginate acrylamide HYDROGEL dye adsorption mechanical properties
在线阅读 下载PDF
Phosphatidylcholine protects against the hepatotoxicity of acrylamide via maintaining metabolic homeostasis of glutathione and glycerophospholipid
2
作者 Yaoran Li Wei Jia +4 位作者 Yiju Zhang Yong Wu Li Zhu Jingjing Jiao Yu Zhang 《Food Science and Human Wellness》 2025年第5期1803-1817,共15页
Acrylamide is classified as a Class 2A carcinogen and mainly metabolized to produce hepatotoxicity.Phosphatidylcholine is thought to protect the liver from damage,but the protective role of phosphatidylcholine on acry... Acrylamide is classified as a Class 2A carcinogen and mainly metabolized to produce hepatotoxicity.Phosphatidylcholine is thought to protect the liver from damage,but the protective role of phosphatidylcholine on acrylamide-exposed metabolic disorders remains unclear.We investigated protective effect of phosphatidylcholine on the hepatic metabolism in rats exposed to acrylamide using metabolomics and molecular biology approaches.Overall,32 endogenous effect biomarkers and 4 exposure biomarkers were identified as differential signature metabolites responsible for acrylamide exposure and phosphatidylcholine protection.Acrylamide exposure interferes with glutathione metabolism by consuming antioxidant glutathione,cysteine and L-ascorbic acid,and disrupts lipid and carbohydrate metabolism through reducing carnitine content and increasing lipid peroxidation.The phosphatidylcholine treatment reduces the expression of cytochrome P4502E1,alleviates the oxidative stress and inflammation of the liver,and stabilizes the content of glutathione,and thus alleviates the disorder of glutathione.Meanwhile,phosphatidylcholine shifted acrylamide-induced phosphatidylcholine into lysophosphatidylcholine to storage from lysophosphatidylcholine to diacylglycerol,thereby maintaining metabolic homeostasis of glycerophospholipid.The results suggested that phosphatidylcholine supplementation alleviate the disorder of glutathione and lipid metabolism caused by acrylamide exposure,but not significantly change the levels of mercapturic acid adducts of acrylamide,providing the evidence for phosphatidylcholine protection against acrylamide-induced liver injury. 展开更多
关键词 acrylamide PHOSPHATIDYLCHOLINE HEPATOTOXICITY Glutathione metabolism Glycerophospholipid homeostasis
暂未订购
Health hazards associated with dietary acrylamide exposure from the biscuit diet of growing female rat pups
3
作者 Yan Chen Yue Wu Heqi Sui 《Food Science and Human Wellness》 2025年第7期2916-2927,共12页
Acrylamide(AA)is a harmful substance widely found in infant and child biscuits;however,the health hazards of AA,especially endogenous AA,in the biscuit matrix is poorly understood.This study aimed to determine the eff... Acrylamide(AA)is a harmful substance widely found in infant and child biscuits;however,the health hazards of AA,especially endogenous AA,in the biscuit matrix is poorly understood.This study aimed to determine the effects of endogenous(0.11 mg/(kg bw·day))and exogenous(1.31,5.23,and 10.13 mg/(kg bw·day))AA exposure from biscuit diet on the hematology,hormone levels,immune function,and liver and kidney damage in growing female rat pups.For the hematological indices,a quadratic reduction was observed in percentage of neutrophils(Neu%)and percentage of eosinophils(Eos%)in the leukograms and in mean corpuscular hemoglobin concentration and platelet in the erythrograms in all the AA-exposed groups.In terms of hormones,extremely remarkably elevations in estradiol(E_(2))and growth hormone(GH)levels were associated with exogenous AA,and a significant increase in GH levels was noted in the endogenous AA group.Regarding immune function,endogenous and exogenous AA showed a dose-dependent immunotoxic effect on lysozyme(LYSO),nitric oxide(NO),immunoglobulin(Ig)G,and IgM.In particular,the lactate dehydrogenase(LDH)activity was significantly high in the exogenous medium dose(Exo-M)and exogenous high dose(Exo-H)groups,and the percentage of CD3^(+)T cells in the blood and CD8^(+)expression levels in the spleen were significantly elevated in the Exo-H group.For liver and kidney function,exogenous AA had a dose-dependent effect on alanine aminotransferases(ALT),aspartate transferases(AST),alkaline phosphatase(ALP),urea nitrogen(UREA),and creatinine(CREA-S).In addition to the dose-dependent effect on the pathological changes in the liver and kidneys,the endogenous AA group presented with hepatocellular steatosis,kidney inflammatory infiltrates,and glomerular and tubular atrophy.Overall,our findings suggested the dose-dependent harmful effect of endogenous and exogenous AA.Special attention should be paid to the damage caused by exposure to endogenous AA.Stringent AA intake guidelines and measures are required to minimize AA levels in the food matrix. 展开更多
关键词 acrylamide BISCUITS Growing rat pups Hormone Immunotoxicity and cytotoxicity IMMUNOPHENOTYPING Immunohistochemistry Histopathology
暂未订购
Dimensionality engineering of flower-like bimetallic nanozyme with high peroxidase-activity for naked-eye and on-site detection of acrylamide in thermally processed foods
4
作者 Sen Chen Feifan Liu +3 位作者 Taimei Cai Rong Wang Fangjian Ning Hailong Peng 《Nano Materials Science》 2025年第1期123-133,共11页
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ... Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection. 展开更多
关键词 acrylamide Glutathione Bimetallic FeCu nanozyme On-site detection Thermally processed food
在线阅读 下载PDF
Simultaneous regulation of solvation shell and ion migration in morpholine-crosslinked polyacrylamide hydrogel electrolytes for durable zinc metal batteries
5
作者 Wei Wei Minghui Zhang +4 位作者 Hui Yan Songbo Nan Zhongxiao Cong Yanfeng Dong Ao Tang 《Journal of Energy Chemistry》 2025年第3期703-711,共9页
Aqueous zinc metal batteries(ZMBs)are vital to potable electronics and electric energy infrastructures because of their high energy conversion efficiency,high energy density,and environmental friendliness.However,ramp... Aqueous zinc metal batteries(ZMBs)are vital to potable electronics and electric energy infrastructures because of their high energy conversion efficiency,high energy density,and environmental friendliness.However,rampant zinc dendrite growth and side reactions on the Zn anode seriously impede the practical application of ZMBs.In this work,morpholine-crosslinked polyacrylamide hydrogel electrolytes(ploy(acrylamide),6m-PAM)are successfully developed to simultaneously regulate solvation shell to suppress side reactions and homogenize Zn^(2+)ion migration for dendrite-free ZMBs.Notably,the 6m-PAM electrolyte exhibits excellent mechanical strength of 50.6 kPa,high Zn^(2+)ion conductivity of 52 mS cm^(-1)at room temperature,and fast self-healing ability,providing stable and adaptable electrolyte-anode interfaces.Experimental and theoretical calculation results reveal that Zn^(2+)-N(morpholine)coordination interaction effectively reshapes the primary solvation shell of Zn^(2+),suppressing the activity of free water and Zn dendrites.As a result,the 6m-PAM electrolyte endows symmetric zinc cells with a long-term cycling life of 2000 h at 7.5 mA cm^(-2).Notably,Zn/Polyaniline(PANI)batteries equipped with 6m-PAM electrolytes also exhibit a high capacity of 124 mA h g^(-1)at 1 A g^(-1)and a long cycling life of 4000 times with a high-capacity retention of 98.3%,This functional crosslinked hydrogel electrolyte paves a new way to construct durable dendrite-free ZMBs. 展开更多
关键词 Hydrogel electrolytes Zn metal anodes Poly(acrylamide) Solvation shell Zn^(2+)ion migration
在线阅读 下载PDF
A Polyvinyl Alcohol/Acrylamide Hydrogel with Enhanced Mechanical Properties Promotes Full-Thickness Skin Defect Healing by Regulating Immunomodulation and Angiogenesis Through Paracrine Secretion 被引量:2
6
作者 Peng Wang Liping Qian +9 位作者 Huixin Liang Jianhao Huang Jing Jin Chunmei Xie Bin Xue Jiancheng Lai Yibo Zhang Lifeng Jiang Lan Li Qing Jiang 《Engineering》 SCIE EI CAS CSCD 2024年第6期138-151,共14页
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na... Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration. 展开更多
关键词 Polyvinyl alcohol/acrylamide hydrogel Mechanical property enhancement Paracrine effect Skin regeneration Signaling pathways
暂未订购
Protective mechanism of quercetin compounds against acrylamide-induced hepatotoxicity 被引量:1
7
作者 Linzi Li Xueying Lei +6 位作者 Lin Chen Ya Ma Jun Luo Xuebo Liu Xinglian Xu Guanghong Zhou Xianchao Feng 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期225-240,共16页
Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds c... Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity. 展开更多
关键词 Quercetin compounds acrylamide Protection mechanism Oxidative stress Antioxidant activity
在线阅读 下载PDF
Procyanidin A_1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway 被引量:1
8
作者 Fangfang Yan Qun Lu +1 位作者 Chengming Wang Rui Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1475-1484,共10页
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi... Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR. 展开更多
关键词 Procyanidin A_1 Digestive products acrylamide Nuclear factor erythroid 2-related factor 2(Nrf2) Intestinal cell damage
在线阅读 下载PDF
Probiotic microorganisms affect the reproductive and nervous systems of male rats treated with acrylamide
9
作者 Seyedhossein Hekmatimoghaddam Maryam Yadegari +2 位作者 Fateme Zare Fatemeh Zakizadeh Seyed Mohammad Seifati 《Asian pacific Journal of Reproduction》 CAS 2024年第4期178-186,共9页
Objective:To evaluate the protective effects of probiotic microorganisms on the reproductive and nervous systems of male rats treated with acrylamide.Methods:Thirty-two rats were randomly divided into 4 groups and rec... Objective:To evaluate the protective effects of probiotic microorganisms on the reproductive and nervous systems of male rats treated with acrylamide.Methods:Thirty-two rats were randomly divided into 4 groups and received normal saline through gavage(control),acrylamide 20 mg/kg body weight,acrylamide plus probiotic microorganisms(Lactobacillus acidophilus,Lactobacillus casei,Lactobacillus bulgaricus,Lactobacillus rhamnosus,Bifidobacterium breve,Bifidobacterium infantis,Streptococcus thermophilus and fructooligosaccharides,all mixed in sachets)20 or 200 mg/kg body weight,respectively.After 30 days,the testis,prostate,seminal vesicle and cerebellum were removed,fixed and stained with hematoxylin-eosin(H&E).The Johnsen score was used to classify spermatogenesis.Cavalieri's principle method was used to evaluate the total volume(in mm3)of the testes.The number of each intratubular cell type as well as intertubular Leydig cells in whole samples was measured using the physical dissector counting techniques.Stereological analysis and the grids were used to determine the volume of cerebellar layers as well as the Purkinje cell number.Results:The testis weight decreased significantly in the acrylamide-treated group compared to the other groups(P<0.001).The number of spermatogonia,spermatocytes,spermatids and Leydig cells in the acrylamide-treated group were significantly less compared to the control group(P<0.05),while they were increased significantly in the acrylamide+200 mg/kg probiotic group(P<0.05;P<0.01).The mean Johnsen score in the acrylamide-treated group was lower than in the control group(P<0.001).Acrylamide-induced changes including congestion,vacuolization in the secretory epithelial cells,and epithelial rupture were observed in the prostate and seminal vesicle.The volumes of cerebellar layers were decreased in the acrylamide group compared to the control group while recovered in both probiotic treated groups.Conclusions:Probiotic microorganisms alleviate acrylamide-induced toxicities against the reproductive and cerebellar tissues in rats. 展开更多
关键词 acrylamide CEREBELLUM MICROORGANISMS PROBIOTICS Prostate Rats TESTIS
暂未订购
High-strength and self-degradable sodium alginate/polyacrylamide preformed particle gels for conformance control to enhance oil recovery 被引量:6
10
作者 Xiao Zhang Jia-Nan Deng +11 位作者 Kai Yang Qian Li Sen-Yao Meng Xiu-Xia Sun Zhao-Zheng Song Yong-Dong Tian Sui-An Zhang Xin-Jia Liu Zhan-Yi Wang Xin-Yu Liu Gui-Wu Lu Zi-Long Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3149-3158,共10页
Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional... Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional PPGs have poor mechanical properties and their swollen particles are easily damaged by shearing force when passing through the fractures in formations,meanwhile PPGs can be also degraded into various byproducts,leading to permanent damage to the reservoir permeability after temporary plugging.Herein,a novel type of dual cross-linked PPGs(dPPGs)was designed and synthesized using sodium alginate(SA)and acrylamide(AAm),cross-linked with N,N’-methylenebisacrylamide(MBA)and Fe^(3+).Results show that dPPGs have excellent mechanical properties with a storage modulus up to 86,445 Pa,which is almost 20 times higher than other reported PPGs.Meanwhile,dPPGs can be completely degraded into liquid without any solid residues or byproducts and the viscosity of dPPGs degraded liquid was found to be lower than 5 mPa·s.A laboratory coreflooding test showed that the plugging efficiency of dPPGs was up to 99.83%on open fractures.The obtained results demonstrated that dPPGs could be used as economical and environment-friendly temporary plugging agent with high-strength,self-degradation,thermal stability,and salt stability,thus making it applicable to a wide range of conformance control to enhance oil recovery. 展开更多
关键词 Conformance control sodium alginate Dual cross-linked Temporary plugging agent HIGH-STRENGTH Self-degradation
原文传递
ZnO Incorporated Acrylamide Grafted Chitosan Based Composite Film for Advanced Wound Healing Applications
11
作者 Khodeja Afrin Kaniz Fatema +6 位作者 Fariha Afrose Md. Abdus Samad Azad Md. Shamim Akter Md. Saiful Alam Papia Haque Yeasmin Akter Newaz Mohammed Bahadur 《Open Journal of Applied Sciences》 2024年第4期1034-1051,共18页
This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prep... This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced. 展开更多
关键词 CHITOSAN ZnO Nanoparticles Wound Management acrylamide Grafting Bacterial Resistance Drug Loading
在线阅读 下载PDF
Swelling Performance Studies of Acrylamide/Potassium 3-Sulfopropyl Methacrylate/Sodium Alginate/Bentonite Biohybrid Sorbent Hydrogels in Binary Mixtures of Water-Solvent 被引量:2
12
作者 Erdener Karadag Z.Deniz Kasim Oztürk +2 位作者 Ö mer Baris Uzüm Semiha Kundakci 《Journal of Encapsulation and Adsorption Sciences》 2019年第1期35-61,共27页
In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mix... In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mixtures of water-solvent. Novel hydrogels were synthesized with free radical solution polymerization by using ammonium persulfate/N,N,N’,N’-tetramethylethylenediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. Swelling experiments were performed in water and binary mixtures of water-solvent (acetone, methanol and tetrahydrofuran) at 25°C, gravimetrically. Some swelling and diffusion properties of the hydrogels were calculated and they were discussed for the biohybrid/hybrid hydrogel systems prepared under various formulations. It has been seen the lower equilibrium percentage swelling ratio values (62% - 124%) in all solvent compositions in comparison with the equilibrium percentage swelling ratio values in water (718% - 2055%). Consequently, the hydrogel systems developed in this study could serve as a potential device for water and water-solvent binary mixtures. 展开更多
关键词 acrylamide/Potassium 3-Sulfopropyl Methacrylate Biohybrid Hydrogel SWELLING sodium Alginate BENTONITE Water-Solvent Binary Mixtures
在线阅读 下载PDF
STUDY ON ACRYLAMIDE-SODIUM ACRYLATE COPOLYMER GELS
13
作者 周茂堂 李谦 徐纪平 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1990年第3期211-216,共6页
Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques. Two different methods have been used to introduce—COONa groups into polymer chains of the gels: (1) by partial hydrolysis of ... Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques. Two different methods have been used to introduce—COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media, in order to explain these differences, ^(13)C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels. 展开更多
关键词 acrylamide sodium acrylate RADIATION HYDROGEL Water Retention Value ^(13)C-NMR
在线阅读 下载PDF
Novel titanium vanadate with superior Na^(+) transport kinetics for rapid charging and low-temperature sodium ion batteries 被引量:1
14
作者 Dan Lv Liehao Wei +6 位作者 Cheng Wang Mingyue Wang Zhongchao Bai Yameng Fan Dongdong Wang Nana Wang Jian Yang 《Green Energy & Environment》 2025年第2期374-381,共8页
Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kineti... Sodium-ion batteries(SIBs)hold great promise for large-scale energy storage in the post-lithium-ion battery era due to their high rate performance and long lifespan,although their sluggish Na^(+) transformation kinetics still require improvement.Encouraged by the excellent electrochemical performance of titanium-based anode materials,here,we present a novel titanium vanadate@carbon(TVO@C)material as anode for SIBs.Our TVO@C material is synthesized via a facile coprecipitation method,with the following annealing process in an acetylene atomosphere.The opened ion channel and the oxygen vacancies within TVO@C facilitate the diffusion of Na^(+) ions,reducing their diffusion barrier.Thus,an ultrahigh rate of 100 A g^(-1)and long life of 10,000 cycles have been achieved.Furthermore,the TVO@C electrode exhibits stable performance,not only at room temperature,but also at temperatures as low as 20 C.The TVO@CjjNa_(3)V_(2)(PO_(4))_(3)@C full cells have also achieved stable discharge/charge for 500 cycles.It is believed that this strategy provides new insight into the development of advanced electrodes and provides a new opportunity for constructing novel high rate electrodes. 展开更多
关键词 Anode High rate Titanium vanadate sodium ion batteries
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
15
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode Liquid metal electrodes sodium MAGNESIUM
在线阅读 下载PDF
Research progress of lignin-derived materials in lithium/sodium ion batteries 被引量:1
16
作者 Jingke Zhang Hengxue Xiang +2 位作者 Zhiwei Cao Shichao Wang Meifang Zhu 《Green Energy & Environment》 2025年第2期322-344,共23页
With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has ... With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has become an urgent need.As the second most abundant natural polymer found in nature,lignin is mainly produced as the by-product of paper pulping and bio-refining industries.It possesses several inherent advantages,such as low-cost,high carbon content,abundant functional groups,and bio-renewable,making it an attractive candidate for the rechargeable battery material.Consequently,there has been a surge of research interest in utilizing lignin or lignin-based carbon materials as the components of lithium-ion(LIBs)or sodium-ion batteries(SIBs),including the electrode,binder,separator,and electrolyte.This review provides a comprehensive overview on the research progress of lignin-derived materials used in LIBs/SIBs,especially the application of lignin-based carbons as the anodes of LIBs/SIBs.The preparation methods and properties of lignin-derived materials with different dimensions are systemically discussed,which emphasizes on the relationship between the chemical/physical structures of lignin-derived materials and the performances of LIBs/SIBs.The current challenges and future prospects of lignin-derived materials in energy storage devices are also proposed. 展开更多
关键词 Lignin-based carbons Lithium battery sodium battery Chemical structure evolution
在线阅读 下载PDF
Rheological properties of poly(acrylamide-co-sodium acrylate) and poly(acrylamide-co-sodium vinylsulfonate) solutions
17
作者 曹杰 车玉菊 +3 位作者 曹绪龙 张继超 王洪艳 谭业邦 《Journal of Central South University》 SCIE EI CAS 2008年第S1期107-110,共4页
Poly(acrylamide-co-sodium acrylate)(PAM/AA-Na) and poly(acrylamide-co-sodium vinylsulfonate)(PAM/VSS-Na) were prepared by inverse emulsion polymerization.The effects of CaCl2 on PAM/VSS-Na or PAM/VSS-Na aqueous soluti... Poly(acrylamide-co-sodium acrylate)(PAM/AA-Na) and poly(acrylamide-co-sodium vinylsulfonate)(PAM/VSS-Na) were prepared by inverse emulsion polymerization.The effects of CaCl2 on PAM/VSS-Na or PAM/VSS-Na aqueous solutions were investigated by steady-flow experiments at 25,40,55 and 70 ℃.The results show that the apparent viscosities of both solutions decrease with addition of CaCl2 or increase of temperature and shear rates.PAM/VSS-Na solution has better performance on the salt tolerance,shear endurance and temperature resistance due to containing sulfonic group in the molecules.Ca2+ concentration can affect the viscous activation energy of both solutions and the reason may be that these interactions between Ca2+ and also copolymer molecules are related to temperature and competitive in solution.These results may offer the basic data for searching the flooding systems with the ability of temperature resistance,salt tolerance and shear endurance for tertiary oil recovery. 展开更多
关键词 POLYacrylamide sodium vinylsulfonate RHEOLOGICAL properties salt TOLERANT temperature resistant
在线阅读 下载PDF
Transcriptomic and biochemical analysis of the mechanism of sodium gluconate promoting the degradation of benzo [a] pyrene by Bacillus subtilis MSC4 被引量:1
18
作者 Rui Chen Tangbing Cui 《Journal of Environmental Sciences》 2025年第6期39-53,共15页
Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contamina... Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contaminated environment.Microbial remediation of B[a]Pcontaminated environments is considered to be one of the most effective strategies,and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation.In this study,we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate,which promoted B[a]P degradation.Based on biochemical and transcriptomic analyses,Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation.Activities of central carbon metabolism,fatty acidβ-oxidation and oxidative phosphorylation were all promoted.The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH,which promoted the synthesis of acetoin and lactate.Genes involved in the nitrogen cycle,especially nitrification and denitrification,were significantly up-regulated,contributing to B[a]P degradation.Genes involved in the synthesis of enzyme cofactors,including thiamine,molybdenum cofactors,NAD and heme,were up-regulated,which contributes to increasing enzyme activity in metabolic pathways.Up-regulation of genes in flagella assembly,chemotaxis,and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P.Genes related to the sugar transport system were upregulated,which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4.This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites. 展开更多
关键词 TRANSCRIPTOMIC BIODEGRADATION BENZO[A]PYRENE Bacillus subtilis sodium gluconate
原文传递
Porous carbon derived from sodium alginate-encapsulated ZIF-8 for high-performance supercapacitor 被引量:1
19
作者 Zhongyan Hu Siyu Gao +6 位作者 Jingkun Zhao Shangru Zhai Jingai Hao Xuemei Fu Qingda An Zuoyi Xiao Feng Zhang 《Resources Chemicals and Materials》 2025年第2期91-98,共8页
Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessf... Porous carbons hold broad application prospects in the domains of electrochemical energy storage devices and sensors.In this study,porous carbon derived from sodium alginate-encapsulated ZIF-8(SA/ZIF-8-C)was suc-cessfully prepared by blending ZIF-8 particles with sodium alginate,forming hydrogel beads in the presence of divalent metal ions,and subsequently subjecting them to high-temperature pyrolysis.Various characterization techniques were employed to evaluate the properties of the prepared materials.The introduction of a carbon framework on ZIF-8-derived particles effectively enhanced the conductivity of the prepared materials.The SA/ZIF-8(1.0)-C sample heated at 800℃exhibited a specific capacitance of up to 208 F g^(-1)at a current density of 0.5 A g^(-1)and outstanding cyclic stability.Even after 10,000 charge and discharge cycles,its capacitance retention rate remained as high as 87.14%.The symmetric supercapacitor constructed with the composite demonstrated an excellent energy density of 14.58 Wh kg^(-1)at a power capacity of 403.85 W kg^(-1).The implementation of this study provides new ideas and inspiration for the development of high-performance supercapacitors. 展开更多
关键词 SUPERCAPACITOR ZIF-8 Porous carbon sodium alginate SA/ZIF-8-C
在线阅读 下载PDF
Effect of sodium laurate on the properties of sodium lauroyl glutamate
20
作者 Guofang Gao Yadan Feng +3 位作者 Ziwei Diao Yongqiang Sun Zhiyong Hu Hailin Zhu 《日用化学工业(中英文)》 北大核心 2025年第4期446-452,共7页
In this paper,the effect of sodium laurate(SL)on the properties of sodium lauroyl glutamate(SLG),such as surface activity,foam,wetting,emulsification,and resistance to hard water,has been systematically investigated.T... In this paper,the effect of sodium laurate(SL)on the properties of sodium lauroyl glutamate(SLG),such as surface activity,foam,wetting,emulsification,and resistance to hard water,has been systematically investigated.The results showed that the critical micelle concentration(cmc)of SLG was 0.30 mmol/L,and the surface tension at the cmc(γcmc)was 34.95 mN/m.With the increase of SL content,the efficiency of SLG solution in reducing the surface tension was decreased.When the SL content was increased,there was no significant change in the foaming ability and foam stability of SLG solutions.The increase of SL content improved both the emulsification and wettability of SLG,but reduced its water resistance. 展开更多
关键词 sodium lauroyl glutamate sodium laurate surface activity emulsification properties wetting properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部