Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and...Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and the numerical instability that may occur during optimization need to be investigated.In the present work,an explicit topology optimization approach is proposed to enhance the sound quality of acoustic-mechanical structures,where the sound quality is described,resorting to frequency response within a specified frequency band.To this end,the moving morphable component(MMC)-based approach is adopted to achieve the explicit topology design,and the mixed finite element method is introduced to evaluate the sound quality.With the use of the explicit description of MMC,the acoustic-structure boundary can be captured accurately,which is important for acoustic response analysis.Moreover,a regularization topology optimization formulation is also developed to avoid the numerical issues produced in some special frequency bands.Numerical examples demonstrate the effectiveness of the proposed approach in improving sound quality performance.展开更多
The mechanical characterization of a 4×4 air-coupled array of Piezoelectric Micromachined Ultrasonic Transducers(PMUTs)is pre-sented.The experimental campaign consists of three set of experi-mental tests,namely:t...The mechanical characterization of a 4×4 air-coupled array of Piezoelectric Micromachined Ultrasonic Transducers(PMUTs)is pre-sented.The experimental campaign consists of three set of experi-mental tests,namely:topography measurements,small signal dynamic measurements,and vibrometry in the non-linear dynamic regime.The behavior of three different kinds of PMUT are reported.They differ according to the thermo-electrical treatment that has been applied to the piezoelectric material.The presence of the fabrication induced residual stresses is investigated and the treat-ment effect is evaluated in terms of the initial deflected configura-tion.The results reported in this paper represent an experimental mechanical investigation useful for the design of PMUT structures with advanced functionalities in the linear and non-linear regime.展开更多
基金support from the Foundation for Innovative Research Groups of the National Natural Science Foundation(11821202)the National Natural Science Foundation(12272075)+1 种基金Liaoning Revitalization Talents Program(XLYC2001003,XLYC1907119)Fundamental Research Funds for the Central Universities(DUT22QN238)are gratefully acknowledged.
文摘Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and the numerical instability that may occur during optimization need to be investigated.In the present work,an explicit topology optimization approach is proposed to enhance the sound quality of acoustic-mechanical structures,where the sound quality is described,resorting to frequency response within a specified frequency band.To this end,the moving morphable component(MMC)-based approach is adopted to achieve the explicit topology design,and the mixed finite element method is introduced to evaluate the sound quality.With the use of the explicit description of MMC,the acoustic-structure boundary can be captured accurately,which is important for acoustic response analysis.Moreover,a regularization topology optimization formulation is also developed to avoid the numerical issues produced in some special frequency bands.Numerical examples demonstrate the effectiveness of the proposed approach in improving sound quality performance.
基金This work was supported by the ECSEL JOINT UNDERTAKING[826452].
文摘The mechanical characterization of a 4×4 air-coupled array of Piezoelectric Micromachined Ultrasonic Transducers(PMUTs)is pre-sented.The experimental campaign consists of three set of experi-mental tests,namely:topography measurements,small signal dynamic measurements,and vibrometry in the non-linear dynamic regime.The behavior of three different kinds of PMUT are reported.They differ according to the thermo-electrical treatment that has been applied to the piezoelectric material.The presence of the fabrication induced residual stresses is investigated and the treat-ment effect is evaluated in terms of the initial deflected configura-tion.The results reported in this paper represent an experimental mechanical investigation useful for the design of PMUT structures with advanced functionalities in the linear and non-linear regime.