The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve ...The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve this problem, ultrasonic phased array acoustic field model and propagation simulation of acoustic waves were introduced to simulate the acoustic pressure distribution and the propagation of the acoustic waves. With the methods above, the detection parameters can be optimized and as a result, the experimental process can be simplified and the detection efficiency can be improved. Meanwhile, the echoes in the S-scan images can be predicted, which can help analyze the detection results and judge the defects.展开更多
A numerical model is developed to simulate the acoustic field in heterogeneous tissue from a medical linear transducer.The coupled full-wave equation for nonlinear ultrasound is solved using a staggered-grid finite di...A numerical model is developed to simulate the acoustic field in heterogeneous tissue from a medical linear transducer.The coupled full-wave equation for nonlinear ultrasound is solved using a staggered-grid finite difference time domain method.The distribution of acoustic pressure and power in human abdominal wall with heterogeneities in sound speed,density,and nonlinear parameter are obtained.Compared with homogeneous medium,when sound speed in tissue is uniform and density unchanged,the acoustic energy decreases only1.8 dB in the focal region;when density in tissue is uniform and sound speed unchanged,the energy decreases 3.8 dB in the focal region,which is almost the same as heterogeneous tissue.Thus,the primary factor of the aberration of focused beam is the heterogeneous distribution of the tissue sound speed.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51175113 ).
文摘The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve this problem, ultrasonic phased array acoustic field model and propagation simulation of acoustic waves were introduced to simulate the acoustic pressure distribution and the propagation of the acoustic waves. With the methods above, the detection parameters can be optimized and as a result, the experimental process can be simplified and the detection efficiency can be improved. Meanwhile, the echoes in the S-scan images can be predicted, which can help analyze the detection results and judge the defects.
文摘A numerical model is developed to simulate the acoustic field in heterogeneous tissue from a medical linear transducer.The coupled full-wave equation for nonlinear ultrasound is solved using a staggered-grid finite difference time domain method.The distribution of acoustic pressure and power in human abdominal wall with heterogeneities in sound speed,density,and nonlinear parameter are obtained.Compared with homogeneous medium,when sound speed in tissue is uniform and density unchanged,the acoustic energy decreases only1.8 dB in the focal region;when density in tissue is uniform and sound speed unchanged,the energy decreases 3.8 dB in the focal region,which is almost the same as heterogeneous tissue.Thus,the primary factor of the aberration of focused beam is the heterogeneous distribution of the tissue sound speed.