Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Objective:To investigate the pattern of antibiotic resistance and biofilm production capabilities of clinical Acinetobacter baumannii(A.baumannii)isolates in this study.Methods:A.baumannii isolates were collected from...Objective:To investigate the pattern of antibiotic resistance and biofilm production capabilities of clinical Acinetobacter baumannii(A.baumannii)isolates in this study.Methods:A.baumannii isolates were collected from Tehran Imam Khomeini Hospital in this cross-sectional study,and the minimum inhibitory concentrations for 16 antibiotics were determined using Vitek2®systems.All isolates were analyzed for biofilm production,then presence of biofilm-associated genes,and class Ⅰ and Ⅱ integron genes.Results:60 non-replicate A.baumannii isolates were included in this study.The resistance rates reached 100%for aztreonam,cefepime,ceftazidime,ciprofloxacin,piperacillin-tazobactam,piperacillin,ticarcillin,and trimethoprim-sulfamethoxazole.A.baumannii isolates were most sensitive to colistin and rifampicin being the most effective treatments.Multi-drug resistant and extensively drug-resistant isolates accounted for 83.3%and 16.7%,respectively.Of the isolates,91.6%formed biofilms,categorized as 10%strong,31.6%moderate,and 50%weak.No correlation was found between antibiotic resistance and biofilm formation.The genes csuE,abaI,and ompA were prevalent,but their distribution was similar across biofilm categories.A relationship between Int1 and biofilm production was noted.Conclusions:The high rates of antibiotic resistance and biofilm formation,alongside the presence of integrons including class Ⅰ and Ⅱ,underscore the necessity for ongoing monitoring of A.baumannii.Notably,classⅠintegron presence was significantly linked to biofilm formation.Further research is needed to explore the connection between antibiotic resistance and biofilm production in A.baumannii.展开更多
The mortality rate ofAcinetobacter baumannii is as high as 47%,This is inseparable From its strong resistance to carbapenems,polymyxins,aminoglycosides,quinolone antibiotics.This article will analyze the resistance of...The mortality rate ofAcinetobacter baumannii is as high as 47%,This is inseparable From its strong resistance to carbapenems,polymyxins,aminoglycosides,quinolone antibiotics.This article will analyze the resistance of Acinetobacter baumannii to carbapenem antibiotics(meropenem and imipenem)and explore why Acinetobacter baumannii is so resistant.The data I used comes from the NCBI database,which includes six resistant groups(R)to meropenem and imipenem,and five sensitive groups(S).The level of the resistant group is complete genome,three sensitive groups are contig,and two are complete genome.Subsequently,I used Prokka in Galaxy to convert the Fasta.file into various forms such as Faa,gbk,ffn.After performing Fisher's test on all GFF files,I obtained the result chart,which includes the search for relevant domains and protein descriptions on Interpro using the chart.ProteinPlus also performed drug pocket prediction and constructed protein models using Swissmodel,as well as different multi sequence comparisons.Finally,I analyzed the functions of the proteins corresponding to the genes specific to the resistance group and the reasons for the development of drug resistance,making future research on the drug resistance of Acinetobacter baumannii easier.And further research can be conducted on the drug pocket in the protein ofAcinetobacter baumannii that has developed resistance,and drugs can be administered.展开更多
Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short...Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.展开更多
Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter...Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.展开更多
Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization...Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.展开更多
Acinetobacter(A.)baumannii is a Gram-negative,non-fermenting opportunistic pathogen increasingly implicated in nosocomial infections,particularly in intensive care units(ICUs).Its ability to acquire multidrug resistan...Acinetobacter(A.)baumannii is a Gram-negative,non-fermenting opportunistic pathogen increasingly implicated in nosocomial infections,particularly in intensive care units(ICUs).Its ability to acquire multidrug resistance(MDR),including to carbapenems,poses a major public health threat.Infections caused by A.baumannii-ranging from pneumonia to bloodstream and wound infections-are difficult to treat and associated with high mortality,especially in critically ill patients[1].展开更多
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金This study was financially supported by the Vice Chancellor for Research Affairs,Ilam University of Medical Sciences,Ilam,Iran(Project No.1326).
文摘Objective:To investigate the pattern of antibiotic resistance and biofilm production capabilities of clinical Acinetobacter baumannii(A.baumannii)isolates in this study.Methods:A.baumannii isolates were collected from Tehran Imam Khomeini Hospital in this cross-sectional study,and the minimum inhibitory concentrations for 16 antibiotics were determined using Vitek2®systems.All isolates were analyzed for biofilm production,then presence of biofilm-associated genes,and class Ⅰ and Ⅱ integron genes.Results:60 non-replicate A.baumannii isolates were included in this study.The resistance rates reached 100%for aztreonam,cefepime,ceftazidime,ciprofloxacin,piperacillin-tazobactam,piperacillin,ticarcillin,and trimethoprim-sulfamethoxazole.A.baumannii isolates were most sensitive to colistin and rifampicin being the most effective treatments.Multi-drug resistant and extensively drug-resistant isolates accounted for 83.3%and 16.7%,respectively.Of the isolates,91.6%formed biofilms,categorized as 10%strong,31.6%moderate,and 50%weak.No correlation was found between antibiotic resistance and biofilm formation.The genes csuE,abaI,and ompA were prevalent,but their distribution was similar across biofilm categories.A relationship between Int1 and biofilm production was noted.Conclusions:The high rates of antibiotic resistance and biofilm formation,alongside the presence of integrons including class Ⅰ and Ⅱ,underscore the necessity for ongoing monitoring of A.baumannii.Notably,classⅠintegron presence was significantly linked to biofilm formation.Further research is needed to explore the connection between antibiotic resistance and biofilm production in A.baumannii.
文摘The mortality rate ofAcinetobacter baumannii is as high as 47%,This is inseparable From its strong resistance to carbapenems,polymyxins,aminoglycosides,quinolone antibiotics.This article will analyze the resistance of Acinetobacter baumannii to carbapenem antibiotics(meropenem and imipenem)and explore why Acinetobacter baumannii is so resistant.The data I used comes from the NCBI database,which includes six resistant groups(R)to meropenem and imipenem,and five sensitive groups(S).The level of the resistant group is complete genome,three sensitive groups are contig,and two are complete genome.Subsequently,I used Prokka in Galaxy to convert the Fasta.file into various forms such as Faa,gbk,ffn.After performing Fisher's test on all GFF files,I obtained the result chart,which includes the search for relevant domains and protein descriptions on Interpro using the chart.ProteinPlus also performed drug pocket prediction and constructed protein models using Swissmodel,as well as different multi sequence comparisons.Finally,I analyzed the functions of the proteins corresponding to the genes specific to the resistance group and the reasons for the development of drug resistance,making future research on the drug resistance of Acinetobacter baumannii easier.And further research can be conducted on the drug pocket in the protein ofAcinetobacter baumannii that has developed resistance,and drugs can be administered.
基金supported by the National Research Foundation of Korea(2020R1F1A1074155).
文摘Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U21A20272)。
文摘Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.
基金Medical Research Project of Xi’an Science and Technology Bureau“Molecular Mechanism of miR-1305 Competitive Endogenous circRNA in the Development of Liver Cancer”(Project No.22YXYJ0134)General Project of Key Research and Development Program of Shaanxi Provincial Department of Science and Technology“Mechanism Study on the Inhibition of Liver Cancer Invasion and Metastasis by Downregulating METTL3 and Reducing the m6A Modification Level of MMP3 with Honokiol”(Project No.2023-YBSF-631)。
文摘Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.
基金supported by ICMR-RMRC intramural fund(RMRC/IM/2022/26).
文摘Acinetobacter(A.)baumannii is a Gram-negative,non-fermenting opportunistic pathogen increasingly implicated in nosocomial infections,particularly in intensive care units(ICUs).Its ability to acquire multidrug resistance(MDR),including to carbapenems,poses a major public health threat.Infections caused by A.baumannii-ranging from pneumonia to bloodstream and wound infections-are difficult to treat and associated with high mortality,especially in critically ill patients[1].