Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’...Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.展开更多
BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probi...BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro...Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.展开更多
据陕西科技大学网站消息,近日,陕西科技大学王传义教授团队在Cell Press细胞出版社旗下期刊Chem Catalysis上发表了题为“Photothermal reforming of polylactic acid plastics into pyruvic acid with 92.8%selectivity at S-scheme Ov...据陕西科技大学网站消息,近日,陕西科技大学王传义教授团队在Cell Press细胞出版社旗下期刊Chem Catalysis上发表了题为“Photothermal reforming of polylactic acid plastics into pyruvic acid with 92.8%selectivity at S-scheme Ov-BiVO4/CdS heterostruc-tures”的研究论文。该校王传义教授为文章通讯作者,环境学院博士生梁芯芯为文章第一作者,陕西科技大学为唯一通讯单位。展开更多
Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and tr...Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.展开更多
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu...Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.展开更多
Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,par...Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language defi...For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language deficits.The exact cause of Alzheimer's disease is still under debate,making it challenging to establish an effective therapy or early diagnosis.It is widely accepted that the accumulation of amyloid-beta peptide in the brain parenchyma leads to synaptic dysfunction,a critical step in Alzheimer's disease development.The traditional amyloid cascade model is initiated by accumulating extracellular amyloid-beta in brain areas essential for memory and language.However,while it is possible to reduce the presence of amyloid-beta plaques in the brain with newer immunotherapies,cognitive symptoms do not necessarily improve.Interestingly,recent studies support the notion that early alterations in subcortical brain regions also contribute to brain damage and precognitive decline in Alzheimer's disease.A body of recent evidence suggests that early Alzheimer's disease is associated with alterations(e.g.,motivation,anxiety,and motor impairment)in subcortical areas,such as the striatum and amygdala,in both human and animal models.Also,recent data indicate that intracellular amyloid-beta appears early in subcortical regions such as the nucleus accumbens,locus coeruleus,and raphe nucleus,even without extracellular amyloid plaques.The reported effects are mainly excitatory,increasing glutamatergic transmission and neuronal excitability.In agreement,data in Alzheimer's disease patients and animal models show an increase in neuronal synchronization that leads to electroencephalogram disturbances and epilepsy.The data indicate that early subcortical brain dysfunctions might be associated with non-cognitive symptoms such as anxiety,irritability,and motivation deficits,which precede memory loss and language alterations.Overall,the evidence reviewed suggests that subcortical brain regions could explain early dysfunctions and perhaps be targets for therapies to slow disease progression.Future research should focus on these non-traditional brain regions to reveal early pathological alterations and underlying mechanisms to advance our understanding of Alzheimer's disease beyond the traditionally studied hippocampal and cortical circuits.展开更多
Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated ne...Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.展开更多
Neural stem cells(NSCs)have the potential for self-renewal and multidirectional differentiation,and their transplantation has achieved good efficacy in a variety of diseases.However,only 1%-10%of transplanted NSCs sur...Neural stem cells(NSCs)have the potential for self-renewal and multidirectional differentiation,and their transplantation has achieved good efficacy in a variety of diseases.However,only 1%-10%of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus.^(Sox2)is an important factor for NSCs to maintain proliferation.Therefore,^(Sox2)-overexpressing NSCs(NSC^(Sox2))may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus.In this study,human NSC^(Sox2)was transplanted into a posthemorrhagic hydrocephalus mouse model,and retinoic acid was administered to further promote NSC differentiation.The results showed that NSC^(Sox2)attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function.NSC^(Sox2)also promoted nerve regeneration,inhibited neuroinflammation and promoted M2 polarization(anti-inflammatory phenotype),thereby reducing cerebrospinal fluid secretion in choroid plexus.These findings suggest that NSC^(Sox2)rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation.展开更多
Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years.A consensus has been reached that prolonged,repeated,high-dose exposure to anesthetics is associated w...Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years.A consensus has been reached that prolonged,repeated,high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function,while single exposure has a relatively minor effect on long-term neurological function.In this review,we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists,a representative group of sedatives,on developing brains or central nervous system diseases.Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways.However,recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period.These findings are incomprehensible for the general“dose-effect”principles of pharmacological research,which has attracted researchers'interest and led to the following questions:What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain?To what extent can their protective effects be maximized?What are the underlying mechanisms involved in these effects?Consequently,this issue has essentially become a“mathematical problem.”After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases,we believe that all such anesthetics exhibit specific threshold effects unique to each drug.These effects range from neuroprotection to neurotoxicity,depending on different brain functional states.However,the exact values of the specific thresholds for different drugs in various brain states,as well as the underlying mechanisms explaining why these thresholds exist,remain unclear.Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics.展开更多
Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun...Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithel...BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.展开更多
We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t m...We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t merely alter“good”or“bad”bacteria but restores the gut microbiota’s holistic equilibrium.This is powerfully shown by its paradoxical reduction of anaerobic probiotics like Bifidobacterium,rectifying the diseased,hypoxic environment,causing their aberrant overgrowth.This challenges the conventional probiotic paradigm and underscores a core TCM principle:Herbal formulas treat disease by restoring the body’s overall functional balance.Future research should focus on the interplay between herbal components,intestinal oxygen,and microbial metabolites to further unravel this sophisticated dialogue.展开更多
Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse...Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically shortchain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood–brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood–brain barriers, thereby alleviating symptoms of Parkinson's disease.展开更多
Numerous pathological states of the nervous system involve alterations in neuronal excitability and synaptic dysfunction,which depend on the function of ion channels.Due to their critical involvement in health and dis...Numerous pathological states of the nervous system involve alterations in neuronal excitability and synaptic dysfunction,which depend on the function of ion channels.Due to their critical involvement in health and disease,the search for new compounds that modulate these proteins is still relevant.Traditional medicine has long been a rich source of neuroactive compounds.For example,the indigenous Mapuche people have used the leaves and bark of the Drimys winteri tree for centuries to treat various diseases.Consequently,several studies have investigated the biological effects of compounds in Drimys winteri,highlighting sesquiterpenes such asα-humulene,drimenin,polygodial,andα-,β-,γ-eudesmol.However,there is currently no literature review focusing on the ability of these sesquiterpenes to modulate ion channels.This review summarizes the current knowledge about neuroactive compounds found in Drimys winteri,with special emphasis on their direct actions on neuronal ion channels.Several Drimys winteri sesquiterpenes modulate a diverse array of neuronal ion channels,including transient receptor potential channels,gamma-aminobutyric acid A receptors,nicotinic acetylcholine receptors,and voltage-dependent Ca^(2+)and Na^(+)channels.Interestingly,the modulation of these molecular targets by Drimys winteri sesquiterpenes correlates with their therapeutic actions.The promiscuous pharmacological profile of Drimys winteri sesquiterpenes suggests they modulate multiple protein targets in vivo,making them potentially useful for treating complex,multifactorial diseases.Further studies at the molecular level may aid in developing multitargeted drugs with enhanced therapeutic effects.展开更多
Aqueous zinc-ion hybrid capacitors(ZIHCs)are promising electrochemical energy storage systems with advantages of high-energy density,low cost,safety and environmental friendliness.However,application of carbon-based c...Aqueous zinc-ion hybrid capacitors(ZIHCs)are promising electrochemical energy storage systems with advantages of high-energy density,low cost,safety and environmental friendliness.However,application of carbon-based cathodes is limited by their low-energy density due to the lack of active sites.Herein,a chemisorption sites modulating strategy is proposed to construct nitrogen-doped polyimide carbon nanoflowers with abundant oxygen vacancies and carbonyl functionalization via high-temperature calcination and subsequent acid processing.The synergistic effect of oxygen vacancies,carbonyl groups,enhanced surface area and porous structure enables stable zinc-ion storage with high capacity.Remarkably,the carbon materials can circulate 20,000 cycles stably at a current density of 2 A·g^(-1).After 10,000 cycles at a high rate of 3 A·g^(-1),a capacity retention rate of 64%can still be achieved.The as-prepared ZIHCs provide an energy density of 65.61 Wh·kg^(-1)at the power density of 197.82 W·kg^(-1).Current research shows that polyimide-derived carbon material synthesized by acid activation provides a new idea for developing cathodes in aqueous ZIHCs.展开更多
基金supported by the National Key R&D Program of China,No.2021YFC2501200(to PC).
文摘Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.
文摘BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金the financial support from the National Natural Science Foundation of China(52172110,52472231,52311530113)Shanghai"Science and Technology Innovation Action Plan"intergovernmental international science and technology cooperation project(23520710600)+1 种基金Science and Technology Commission of Shanghai Municipality(22DZ1205600)the Central Guidance on Science and Technology Development Fund of Zhejiang Province(2024ZY01011)。
文摘Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
文摘据陕西科技大学网站消息,近日,陕西科技大学王传义教授团队在Cell Press细胞出版社旗下期刊Chem Catalysis上发表了题为“Photothermal reforming of polylactic acid plastics into pyruvic acid with 92.8%selectivity at S-scheme Ov-BiVO4/CdS heterostruc-tures”的研究论文。该校王传义教授为文章通讯作者,环境学院博士生梁芯芯为文章第一作者,陕西科技大学为唯一通讯单位。
文摘Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation),project numbers 324633948 and 409784463(DFG grants Hi 678/9-3 and Hi 678/10-2,FOR2953)to HHBundesministerium für Bildung und Forschung-BMBF,project number 16LW0463K to HT.
文摘Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.
文摘Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
文摘For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language deficits.The exact cause of Alzheimer's disease is still under debate,making it challenging to establish an effective therapy or early diagnosis.It is widely accepted that the accumulation of amyloid-beta peptide in the brain parenchyma leads to synaptic dysfunction,a critical step in Alzheimer's disease development.The traditional amyloid cascade model is initiated by accumulating extracellular amyloid-beta in brain areas essential for memory and language.However,while it is possible to reduce the presence of amyloid-beta plaques in the brain with newer immunotherapies,cognitive symptoms do not necessarily improve.Interestingly,recent studies support the notion that early alterations in subcortical brain regions also contribute to brain damage and precognitive decline in Alzheimer's disease.A body of recent evidence suggests that early Alzheimer's disease is associated with alterations(e.g.,motivation,anxiety,and motor impairment)in subcortical areas,such as the striatum and amygdala,in both human and animal models.Also,recent data indicate that intracellular amyloid-beta appears early in subcortical regions such as the nucleus accumbens,locus coeruleus,and raphe nucleus,even without extracellular amyloid plaques.The reported effects are mainly excitatory,increasing glutamatergic transmission and neuronal excitability.In agreement,data in Alzheimer's disease patients and animal models show an increase in neuronal synchronization that leads to electroencephalogram disturbances and epilepsy.The data indicate that early subcortical brain dysfunctions might be associated with non-cognitive symptoms such as anxiety,irritability,and motivation deficits,which precede memory loss and language alterations.Overall,the evidence reviewed suggests that subcortical brain regions could explain early dysfunctions and perhaps be targets for therapies to slow disease progression.Future research should focus on these non-traditional brain regions to reveal early pathological alterations and underlying mechanisms to advance our understanding of Alzheimer's disease beyond the traditionally studied hippocampal and cortical circuits.
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382304947)Key Research and Development Project of Shaanxi Province(2023GHZD43).Peer re v iew information。
文摘Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.
基金supported by the National Natural Science Foundation of China,Nos.82473334(to LZ),82401629(to XL)the Major Scientific and Technological Achievements Transformation Project of Ningxia Hui Autonomous Region,No.2022CJE09013(to LZ)+4 种基金Mianyang Science and Technology Bureau(Mianyang Science and Technology Program),No.2023ZYDF097(to LZ)NHC Key Laboratory of Nuclear Technology Medical Transformation(Mianyang Central Hospital),No.2023HYX001(to LZ)Spinal Cord Diseases Clinical Medical Center of Yunnan Province,No.2024JSKFKT-16(to BG)the Natural Science Foundation of Sichuan Province,No.2024NSFSC1646(to XL)the China Postdoctoral Science Foundation,Nos.GZC20231811(to XL),2024T170601(to XL)and 2024M76228(to XL).
文摘Neural stem cells(NSCs)have the potential for self-renewal and multidirectional differentiation,and their transplantation has achieved good efficacy in a variety of diseases.However,only 1%-10%of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus.^(Sox2)is an important factor for NSCs to maintain proliferation.Therefore,^(Sox2)-overexpressing NSCs(NSC^(Sox2))may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus.In this study,human NSC^(Sox2)was transplanted into a posthemorrhagic hydrocephalus mouse model,and retinoic acid was administered to further promote NSC differentiation.The results showed that NSC^(Sox2)attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function.NSC^(Sox2)also promoted nerve regeneration,inhibited neuroinflammation and promoted M2 polarization(anti-inflammatory phenotype),thereby reducing cerebrospinal fluid secretion in choroid plexus.These findings suggest that NSC^(Sox2)rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation.
文摘Debates regarding the specific effects of general anesthesia on developing brains have persisted for over 30 years.A consensus has been reached that prolonged,repeated,high-dose exposure to anesthetics is associated with a higher incidence of deficits in behavior and executive function,while single exposure has a relatively minor effect on long-term neurological function.In this review,we summarize the dose-dependent neuroprotective or neurotoxic effects of gamma-aminobutyric acid type A receptor agonists,a representative group of sedatives,on developing brains or central nervous system diseases.Most preclinical research indicates that anesthetics have neurotoxic effects on the developing brain through various signal pathways.However,recent studies on low-dose anesthetics suggest that they may promote neurodevelopment during this critical period.These findings are incomprehensible for the general“dose-effect”principles of pharmacological research,which has attracted researchers'interest and led to the following questions:What is the threshold for the dual effects exerted by anesthetics such as propofol and sevoflurane on the developing brain?To what extent can their protective effects be maximized?What are the underlying mechanisms involved in these effects?Consequently,this issue has essentially become a“mathematical problem.”After summarizing the dose-dependent effects of gamma-aminobutyric acid type A receptor agonist sedatives in both the developing brain and the brains of patients with central nervous system diseases,we believe that all such anesthetics exhibit specific threshold effects unique to each drug.These effects range from neuroprotection to neurotoxicity,depending on different brain functional states.However,the exact values of the specific thresholds for different drugs in various brain states,as well as the underlying mechanisms explaining why these thresholds exist,remain unclear.Further in-depth exploration of these issues could significantly enhance the therapeutic translational value of these anesthetics.
基金supported by the National Natural Science Foundation of China(Nos.82573045,82460602,82560459)the Hainan Provincial Graduate Student Innovative Research Project(No.Qhys2024-440).
文摘Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.
文摘We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t merely alter“good”or“bad”bacteria but restores the gut microbiota’s holistic equilibrium.This is powerfully shown by its paradoxical reduction of anaerobic probiotics like Bifidobacterium,rectifying the diseased,hypoxic environment,causing their aberrant overgrowth.This challenges the conventional probiotic paradigm and underscores a core TCM principle:Herbal formulas treat disease by restoring the body’s overall functional balance.Future research should focus on the interplay between herbal components,intestinal oxygen,and microbial metabolites to further unravel this sophisticated dialogue.
基金supported by the National Natural Science Foundation of China,Nos. 32260196 (to JY), 81860646 (to ZY) and 31860274 (to JY)a grant from Yunnan Department of Science and Technology,Nos. 202101AT070251 (to JY), 202201AS070084 (to ZY), 202301AY070001-239 (to JY), 202101AZ070001-012, and 2019FI016 (to ZY)。
文摘Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically shortchain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood–brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood–brain barriers, thereby alleviating symptoms of Parkinson's disease.
基金supported by ANID-FONDECYT 1200908(to JF),ANID-FONDECYT 1211082 and 1250856(to GEY)by the Millennium Nucleus for the Study of Pain NCN19_038(Mi Nu SPain)(to GEY)funded by the ANID scholarship 21201176。
文摘Numerous pathological states of the nervous system involve alterations in neuronal excitability and synaptic dysfunction,which depend on the function of ion channels.Due to their critical involvement in health and disease,the search for new compounds that modulate these proteins is still relevant.Traditional medicine has long been a rich source of neuroactive compounds.For example,the indigenous Mapuche people have used the leaves and bark of the Drimys winteri tree for centuries to treat various diseases.Consequently,several studies have investigated the biological effects of compounds in Drimys winteri,highlighting sesquiterpenes such asα-humulene,drimenin,polygodial,andα-,β-,γ-eudesmol.However,there is currently no literature review focusing on the ability of these sesquiterpenes to modulate ion channels.This review summarizes the current knowledge about neuroactive compounds found in Drimys winteri,with special emphasis on their direct actions on neuronal ion channels.Several Drimys winteri sesquiterpenes modulate a diverse array of neuronal ion channels,including transient receptor potential channels,gamma-aminobutyric acid A receptors,nicotinic acetylcholine receptors,and voltage-dependent Ca^(2+)and Na^(+)channels.Interestingly,the modulation of these molecular targets by Drimys winteri sesquiterpenes correlates with their therapeutic actions.The promiscuous pharmacological profile of Drimys winteri sesquiterpenes suggests they modulate multiple protein targets in vivo,making them potentially useful for treating complex,multifactorial diseases.Further studies at the molecular level may aid in developing multitargeted drugs with enhanced therapeutic effects.
基金supported by the National Natural Science Foundation of China(Nos.52272211 and 52072145)the Funding of Jilin Province Development and Reform Commission(Nos.2024C018-11 and 2020C026-2)+3 种基金the Scientific and Technological Developing Project of Jilin Province(Nos.20230508046RC,20240602023RC,YDZJ202101ZYTS185 and YDZJ202201ZYTS372)Jilin Talent Development Funding(No.2021Y027)the Funds for Special Projects of the Central Government in Guidance of Local Science and Technology Development(No.202002017JC)the Research Program on Science and Technology from the Education Department of Jilin Province(Nos.JJKH20220439KJ and JJKH20210550KJ).
文摘Aqueous zinc-ion hybrid capacitors(ZIHCs)are promising electrochemical energy storage systems with advantages of high-energy density,low cost,safety and environmental friendliness.However,application of carbon-based cathodes is limited by their low-energy density due to the lack of active sites.Herein,a chemisorption sites modulating strategy is proposed to construct nitrogen-doped polyimide carbon nanoflowers with abundant oxygen vacancies and carbonyl functionalization via high-temperature calcination and subsequent acid processing.The synergistic effect of oxygen vacancies,carbonyl groups,enhanced surface area and porous structure enables stable zinc-ion storage with high capacity.Remarkably,the carbon materials can circulate 20,000 cycles stably at a current density of 2 A·g^(-1).After 10,000 cycles at a high rate of 3 A·g^(-1),a capacity retention rate of 64%can still be achieved.The as-prepared ZIHCs provide an energy density of 65.61 Wh·kg^(-1)at the power density of 197.82 W·kg^(-1).Current research shows that polyimide-derived carbon material synthesized by acid activation provides a new idea for developing cathodes in aqueous ZIHCs.