The acidity and basicity of the solvents can influence the reaction outcome notably,and hence the precise measurement of pH is important for reaction.However,not all the pH values of organic solvents can be determined...The acidity and basicity of the solvents can influence the reaction outcome notably,and hence the precise measurement of pH is important for reaction.However,not all the pH values of organic solvents can be determined with a classic pH meter straightly.In this research,the acidity and basicity of environmentally friendly green solvents,such as ZnCl_(2) molten salt hydrate,ionic liquids(ILs)and deep eutectic solvents(DESs),were characterized by 31P and 1 H NMR spectroscopy using trimethylphosphine oxide(TMPO)and pyrrole as probe molecules at 298 K.For the ZnCl_(2) molten salt hydrate,the acidic strength of the ZnCl_(2) molten salt hydrate increased with the concentration of ZnCl_(2).By using the ^(1)H-pyrrole NMR approach,it was found that the base strength of amino acid-based ILs follows the order:[Ch][Lys]>[Ch][His].展开更多
The relative basicity of trioctylamine (TOA), pKa,BS, in protic polar diluent (1-octanol), non-protic polar diluent [methyl iso-butyl ketone (MIBK)] and inert diluent (CCl4) were determined for 11 mono-carboxy...The relative basicity of trioctylamine (TOA), pKa,BS, in protic polar diluent (1-octanol), non-protic polar diluent [methyl iso-butyl ketone (MIBK)] and inert diluent (CCl4) were determined for 11 mono-carboxylic acids, and the dependence of PKa,BS on the nature of solute and diluent type was discussed. The results show that pKa,BS determined by half neutralization with the solute carboxylic acid is in the order of 1-octanol〉MIBK〉CCl4 for a fixed TOA concentration, and it increases with increasing acidity and hydrophobicity of the carboxylic acid. Compared with two parameters of the solute extracted (acidity and hydrophobicity), pKa,BS is more sensitive to hydrophobicity of the acid. A mathematic equation representing relationship between the apparent extraction equilibrium (K11) and the system properties (PKa,BS and pKa) was proposed: 1g K11 = 2pKa,BS=pKa. It is proved that the extraction equilibrium of mono-carboxylic acids can be predicted by the above equation with reasonable accuracy.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should b...Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.展开更多
Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence...Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.展开更多
The new theoretical method for the accurate determination of acidity of dilute solutions of weak multibasic organic acids (which are widely used in medicine, pharmacology, various branches of industry and participate ...The new theoretical method for the accurate determination of acidity of dilute solutions of weak multibasic organic acids (which are widely used in medicine, pharmacology, various branches of industry and participate in important biological processes in living organisms) is suggested. The concepts of the contributions of the separate dissociation steps to the [H+] value, xm, are used for an analysis of complex equilibria of the processes of dissociation of these acids. The cases of weak dibasic and tribasic organic acids with the “overlapping” dissociation equilibria and a general case of weak multibasic acids, HnA, are considered. From the conditions of equality of the concentrations of various ionized and non-ionized forms in the dilute solutions of weak multibasic organic acids the areas of dominance of these forms in connection with the corresponding xm values are formulated.展开更多
In this paper the effect of ion-exchange simplified as water handling on basic zeolitewas studied.It was foond that the interaction between chemisorbed water and Na+-O2- couplewould increase the total number of basic ...In this paper the effect of ion-exchange simplified as water handling on basic zeolitewas studied.It was foond that the interaction between chemisorbed water and Na+-O2- couplewould increase the total number of basic sites, while weaken the intensity of each basic sites.Theprocess can be explained by the adsorb model of organic acid on NaX presented before.展开更多
Volcanic ashes are posing increasingly severer threats to the aviation safety.As the operation temperature of the turbine engine elevates,molten volcanic ash leads to the degradation of the thermal barrier coatings(TB...Volcanic ashes are posing increasingly severer threats to the aviation safety.As the operation temperature of the turbine engine elevates,molten volcanic ash leads to the degradation of the thermal barrier coatings(TBCs)and eventually catastrophic engine failure.However,the physical and chemical properties of volcanic ashes vary due to the distinct chemical compositions,rendering it extremely challenging to evaluate the effects of each ash material on the failure of TBC.Here,we proposed a new metric termed Basicity to investigate the influence of chemical composition on the melting temperature and viscosity of volcanic ashes.Artificial CaO-MgO-Al_(2)O_(3)-SiO_(2) materials(CMAS)were synthesized to simulate the wetting,spreading and corrosion behavior of volcanic ashes at 1300 ℃ on(Gd_(0.9)Yb_(0.1))2Zr_(2)O_(7)(GYbZ),a model TBC material.Our results reveal that the synthetic CMAS does not fully capture the damage caused by volcanic ash due to the difference in compositions.The viscosity and characteristic temperatures decrease as the Basicity value increases,indicating its significant impact on the fusion properties of ashes.Notably,distinct from CMAS,the unexpected presence of Fe_(2)O_(3) in volcanic ashes promotes the formation of garnet phase,conversely impedes the formation of apatite dense layer.These findings provide valuable insights into the corrosion mechanisms caused by TBC and strategies for TBC protection against volcanic ashes.展开更多
The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can...The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can be located in the liquidus region of low melting-point diopside(CaMgSi_(2)O_(6))when slag basicity is kept at 0.3 and limonitic laterite mass fraction is not less than 10%.When the reduction temperature,C/O mass ratio,limonitic laterite mass fraction and slag basicity are kept at the optimum values of 1300℃,0.86,20%and 0.3,respectively,ferronickel products with grades 6.42%Ni and 86.99%Fe are prepared.The recovery rates of Ni and Fe reach 88.60%and 72.25%,respectively.展开更多
Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exa...Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exacerbated by the gradually accumulated basicity of the surface with the Ni content increasing.Herein,the acidic Li_(3)PO_(4)coating layer on NCM811 particles is introduced by ball-milling approach to neutralize the basicity and aggrandize the interfacial stability.The tailored surface structure and components of NCM811 not only suppress the direct contact of cathode particles with sulfide solid-state electrolyte,but also facilitate electrochemical dynamics by driving the Li+migration across the interface and promoting the electron exchange.Thus,cells with Li_(3)PO_(4)coating layer yield 101.3 mAh g^(-1)specific capacity at 2.0 C and highly reversed discharging capacity after suffering from harsh work conditions.Additionally,the stable coating layer broadens the electrochemical windows of cells,delivering long cycle stability(>100 cycles 0.5 C).This contribution highlights the importance of basicity regulation of Ni-rich layered oxide cathode and offers a low-cost and effective approach to design the interfacial structures for the development of all solid-state batteries.展开更多
Constructing new Brönsted acid sites within zeolitic materials holds paramount importance for the advancement of solid-acid catalysis.Zeo-type germanosilicates,a class of metallosilicates with a neutral framework...Constructing new Brönsted acid sites within zeolitic materials holds paramount importance for the advancement of solid-acid catalysis.Zeo-type germanosilicates,a class of metallosilicates with a neutral framework composed of tetravalent Ge and Si oxygen tetrahedrons,are conventionally considered not to generate Brönsted acid sites.Herein,we disclose an abnormal phenomenon with Ge-rich IWW-type germanosilicate(IWW-A)as an example that Ge-enriched germanosilicates are featured by mild Brönsted acidity.Using the art-of-state density functional theory calculation,19F magic angle spinning nuclear magnetic resonance,microcalorimetric and ammonia infrared mass spectrometry-temperature-programmed desorption characterizations,the nature of germanosilicate's Brönsted acidity has been demonstrated to be closely related to the neighboring framework Ge-hydroxyl pairs.Besides,the contribution of Ge-OH groups to Brönsted acidity and the role of Ge-pair structure for maintaining mild acid strength have been elucidated.In catalytic cracking of n-hexane and methanol-to-olefins reaction,the IWW-A germanosilicate exhibit high light olefins selectivity,good recyclability and low carbon deposition,outperforming the benchmark zeolite catalyst,ZSM-5 aluminosilicate.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro...Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.展开更多
Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’...Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.展开更多
Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and tr...Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.展开更多
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu...Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transferenc...Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.展开更多
In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first ...In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first time. The formation mecha- nism of excellent features was analyzed from the aspects of physiological traits, ge- ographical environments and constraint reasons. Thereby, the outstanding features of Tibetan swine could be extended continuously, and the poor characteristics should be improved in the future.展开更多
基金The work is supported by the National Natural Science Foundation of China(grant no.U1710106,U1810111)the Key Research and Development Program of Shanxi Province(international cooperation)(grant no.201703D421041)the CAS President's International Fellowship Initiative(grant no.2015VMB052).
文摘The acidity and basicity of the solvents can influence the reaction outcome notably,and hence the precise measurement of pH is important for reaction.However,not all the pH values of organic solvents can be determined with a classic pH meter straightly.In this research,the acidity and basicity of environmentally friendly green solvents,such as ZnCl_(2) molten salt hydrate,ionic liquids(ILs)and deep eutectic solvents(DESs),were characterized by 31P and 1 H NMR spectroscopy using trimethylphosphine oxide(TMPO)and pyrrole as probe molecules at 298 K.For the ZnCl_(2) molten salt hydrate,the acidic strength of the ZnCl_(2) molten salt hydrate increased with the concentration of ZnCl_(2).By using the ^(1)H-pyrrole NMR approach,it was found that the base strength of amino acid-based ILs follows the order:[Ch][Lys]>[Ch][His].
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The relative basicity of trioctylamine (TOA), pKa,BS, in protic polar diluent (1-octanol), non-protic polar diluent [methyl iso-butyl ketone (MIBK)] and inert diluent (CCl4) were determined for 11 mono-carboxylic acids, and the dependence of PKa,BS on the nature of solute and diluent type was discussed. The results show that pKa,BS determined by half neutralization with the solute carboxylic acid is in the order of 1-octanol〉MIBK〉CCl4 for a fixed TOA concentration, and it increases with increasing acidity and hydrophobicity of the carboxylic acid. Compared with two parameters of the solute extracted (acidity and hydrophobicity), pKa,BS is more sensitive to hydrophobicity of the acid. A mathematic equation representing relationship between the apparent extraction equilibrium (K11) and the system properties (PKa,BS and pKa) was proposed: 1g K11 = 2pKa,BS=pKa. It is proved that the extraction equilibrium of mono-carboxylic acids can be predicted by the above equation with reasonable accuracy.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金supported by the National Natural Science Foundation of China (Nos.42022050 and 42277088)the Guangdong Basic and Applied Basic Research Fund Committee (Nos.2021A1515011248 and 2023A1515012010)the Guangdong Foundation for the Program of Science and Technology Research (No.2020B1212060053).
文摘Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.
基金supported by the National Key R&D Program of China(No.2022YFC3701102)the National Natural Science Foundation of China(Nos.22376029,22176038,91744205 and 21777025)the Natural Science Foundation of Shanghai City(No.22ZR1404700).
文摘Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.
文摘The new theoretical method for the accurate determination of acidity of dilute solutions of weak multibasic organic acids (which are widely used in medicine, pharmacology, various branches of industry and participate in important biological processes in living organisms) is suggested. The concepts of the contributions of the separate dissociation steps to the [H+] value, xm, are used for an analysis of complex equilibria of the processes of dissociation of these acids. The cases of weak dibasic and tribasic organic acids with the “overlapping” dissociation equilibria and a general case of weak multibasic acids, HnA, are considered. From the conditions of equality of the concentrations of various ionized and non-ionized forms in the dilute solutions of weak multibasic organic acids the areas of dominance of these forms in connection with the corresponding xm values are formulated.
文摘In this paper the effect of ion-exchange simplified as water handling on basic zeolitewas studied.It was foond that the interaction between chemisorbed water and Na+-O2- couplewould increase the total number of basic sites, while weaken the intensity of each basic sites.Theprocess can be explained by the adsorb model of organic acid on NaX presented before.
基金financially supported by the Nature Science Foun-dations of China(NSFC)(Nos.52401071 andU21B2052)China National Postdoctoral Program for Innovative Talents(No.BX20240459).
文摘Volcanic ashes are posing increasingly severer threats to the aviation safety.As the operation temperature of the turbine engine elevates,molten volcanic ash leads to the degradation of the thermal barrier coatings(TBCs)and eventually catastrophic engine failure.However,the physical and chemical properties of volcanic ashes vary due to the distinct chemical compositions,rendering it extremely challenging to evaluate the effects of each ash material on the failure of TBC.Here,we proposed a new metric termed Basicity to investigate the influence of chemical composition on the melting temperature and viscosity of volcanic ashes.Artificial CaO-MgO-Al_(2)O_(3)-SiO_(2) materials(CMAS)were synthesized to simulate the wetting,spreading and corrosion behavior of volcanic ashes at 1300 ℃ on(Gd_(0.9)Yb_(0.1))2Zr_(2)O_(7)(GYbZ),a model TBC material.Our results reveal that the synthetic CMAS does not fully capture the damage caused by volcanic ash due to the difference in compositions.The viscosity and characteristic temperatures decrease as the Basicity value increases,indicating its significant impact on the fusion properties of ashes.Notably,distinct from CMAS,the unexpected presence of Fe_(2)O_(3) in volcanic ashes promotes the formation of garnet phase,conversely impedes the formation of apatite dense layer.These findings provide valuable insights into the corrosion mechanisms caused by TBC and strategies for TBC protection against volcanic ashes.
基金supports from the National Key R&D Program of China(No.2022YFC3901404)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-BHX0166)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)are sincerely acknowledged.
文摘The semi-molten smelting process of a mixture of saprolitic and limonitic laterite ores was systematically investigated and the effect of slag basicity was deeply analyzed.The results indicate that the slag system can be located in the liquidus region of low melting-point diopside(CaMgSi_(2)O_(6))when slag basicity is kept at 0.3 and limonitic laterite mass fraction is not less than 10%.When the reduction temperature,C/O mass ratio,limonitic laterite mass fraction and slag basicity are kept at the optimum values of 1300℃,0.86,20%and 0.3,respectively,ferronickel products with grades 6.42%Ni and 86.99%Fe are prepared.The recovery rates of Ni and Fe reach 88.60%and 72.25%,respectively.
基金supported by the National Natural Science Foundation of China(22379121)the Shenzhen Foundation Research Fund(JCYJ20210324104412034)+1 种基金the Fundamental Research Funds for the Central Universities(G2024KY05103)the“Scientists+Engineers”Team in Qinchuangyuan of Shaanxi Province(2024QCY-KXJ-023)。
文摘Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exacerbated by the gradually accumulated basicity of the surface with the Ni content increasing.Herein,the acidic Li_(3)PO_(4)coating layer on NCM811 particles is introduced by ball-milling approach to neutralize the basicity and aggrandize the interfacial stability.The tailored surface structure and components of NCM811 not only suppress the direct contact of cathode particles with sulfide solid-state electrolyte,but also facilitate electrochemical dynamics by driving the Li+migration across the interface and promoting the electron exchange.Thus,cells with Li_(3)PO_(4)coating layer yield 101.3 mAh g^(-1)specific capacity at 2.0 C and highly reversed discharging capacity after suffering from harsh work conditions.Additionally,the stable coating layer broadens the electrochemical windows of cells,delivering long cycle stability(>100 cycles 0.5 C).This contribution highlights the importance of basicity regulation of Ni-rich layered oxide cathode and offers a low-cost and effective approach to design the interfacial structures for the development of all solid-state batteries.
文摘Constructing new Brönsted acid sites within zeolitic materials holds paramount importance for the advancement of solid-acid catalysis.Zeo-type germanosilicates,a class of metallosilicates with a neutral framework composed of tetravalent Ge and Si oxygen tetrahedrons,are conventionally considered not to generate Brönsted acid sites.Herein,we disclose an abnormal phenomenon with Ge-rich IWW-type germanosilicate(IWW-A)as an example that Ge-enriched germanosilicates are featured by mild Brönsted acidity.Using the art-of-state density functional theory calculation,19F magic angle spinning nuclear magnetic resonance,microcalorimetric and ammonia infrared mass spectrometry-temperature-programmed desorption characterizations,the nature of germanosilicate's Brönsted acidity has been demonstrated to be closely related to the neighboring framework Ge-hydroxyl pairs.Besides,the contribution of Ge-OH groups to Brönsted acidity and the role of Ge-pair structure for maintaining mild acid strength have been elucidated.In catalytic cracking of n-hexane and methanol-to-olefins reaction,the IWW-A germanosilicate exhibit high light olefins selectivity,good recyclability and low carbon deposition,outperforming the benchmark zeolite catalyst,ZSM-5 aluminosilicate.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金the financial support from the National Natural Science Foundation of China(52172110,52472231,52311530113)Shanghai"Science and Technology Innovation Action Plan"intergovernmental international science and technology cooperation project(23520710600)+1 种基金Science and Technology Commission of Shanghai Municipality(22DZ1205600)the Central Guidance on Science and Technology Development Fund of Zhejiang Province(2024ZY01011)。
文摘Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
基金supported by the National Key R&D Program of China,No.2021YFC2501200(to PC).
文摘Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.
文摘Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation),project numbers 324633948 and 409784463(DFG grants Hi 678/9-3 and Hi 678/10-2,FOR2953)to HHBundesministerium für Bildung und Forschung-BMBF,project number 16LW0463K to HT.
文摘Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
基金Projects(2012AA062302,2012AA062304) supported by the National High Technology Research and Development Program of China(863 Program)Projects(51090384,51174051) supported by the National Natural Science Foundation of ChinaProject(2012DFR60210) supported by the International Cooperation of Ministry of China
文摘Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.
基金Supported by National Science and Technology Support Program"Integration and Demonstration of Security Technology for Production-Ecosystem-Life in Key Pastoral Areas"(2012BAD13B00)National Science and Technology Support Program"In-tegration and Demonstration of Optimized Security Technology for Production-Ecosystem-Life in the Pastoral Area of Northwest Sichuan"(2012BAD13B06)~~
文摘In this review, the carcass, meat quality, internal organs, basic nutrition component, amino acids (AAs), fatty acids, inosine monophosphate (IMP) and mus- cle fiber of Tibetan swine were summarized for the first time. The formation mecha- nism of excellent features was analyzed from the aspects of physiological traits, ge- ographical environments and constraint reasons. Thereby, the outstanding features of Tibetan swine could be extended continuously, and the poor characteristics should be improved in the future.