Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness...Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.展开更多
The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator...The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator structure is adopted to enhance its antidemagnetization capability.To analyze the contributions of AlNiCo and NdFeB to the induced electromotive force(EMF)in the AFHPM-MM,a frozen permeability-based induced EMF calculation method is proposed.Theoretical analysis reveals that the conventional method exhibits substantial errors in calculating the AlNiCo-induced EMF,primarily attributed to its failure to adequately account for the dynamic magnetization characteristic discrepancies of AlNiCo under varying magnetization states.Through the analysis of magnetization variations in AlNiCo during the flux adjustment process under different magnetization states,an improved induced EMF calculation method is proposed.Comparative results indicate that,during the flux enhancement process,the average calculation error of the AlNiCo-induced EMF is reduced from 19.84%to 2.09%,whereas during the flux weakening process,the error is reduced from 3.87%to 1.67%.The proposed method achieves accurate induced EMF calculation for the AFHPM-MM.展开更多
Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,w...Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.展开更多
Camera Pose Estimating from point and line correspondences is critical in various applications,including robotics,augmented reality,3D reconstruction,and autonomous navigation.Existing methods,such as the Perspective-...Camera Pose Estimating from point and line correspondences is critical in various applications,including robotics,augmented reality,3D reconstruction,and autonomous navigation.Existing methods,such as the Perspective-n-Point(PnP)and Perspective-n-Line(PnL)approaches,offer limited accuracy and robustness in environments with occlusions,noise,or sparse feature data.This paper presents a unified solution,Efficient and Accurate Pose Estimation from Point and Line Correspondences(EAPnPL),combining point-based and linebased constraints to improve pose estimation accuracy and computational efficiency,particularly in low-altitude UAV navigation and obstacle avoidance.The proposed method utilizes quaternion parameterization of the rotation matrix to overcome singularity issues and address challenges in traditional rotation matrix-based formulations.A hybrid optimization framework is developed to integrate both point and line constraints,providing a more robust and stable solution in complex scenarios.The method is evaluated using synthetic and realworld datasets,demonstrating significant improvements in performance over existing techniques.The results indicate that the EAPnPL method enhances accuracy and reduces computational complexity,making it suitable for real-time applications in autonomous UAV systems.This approach offers a promising solution to the limitations of existing camera pose estimation methods,with potential applications in low-altitude navigation,autonomous robotics,and 3D scene reconstruction.展开更多
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ...With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment.展开更多
Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxid...Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.展开更多
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
The accurately targeted poverty alleviation has gradually become one of the important research directions in the field of poverty research. The existing foreign and domestic studies concerning about the accurately tar...The accurately targeted poverty alleviation has gradually become one of the important research directions in the field of poverty research. The existing foreign and domestic studies concerning about the accurately targeted poverty alleviation are few and mainly focus on the aspects such as poverty object recognition, target for poverty alleviation, and fund embarking; a complete system has not yet been formed for the relevant studies. On the basis of analyzing and reviewing relevant studies on the accurately targeted poverty alleviation at home and abroad, a further research direction for the accurately targeted poverty alleviation is proposed in this paper.展开更多
The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are pr...The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.展开更多
An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentrati...An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.展开更多
Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing techn...Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.展开更多
Urothelial carcinoma(UC)is a common malignant tumor in the urinary system with high recurrence rate and low survival rate 5 years after surgery.At present,imaging examination and other diagnostic methods have some sho...Urothelial carcinoma(UC)is a common malignant tumor in the urinary system with high recurrence rate and low survival rate 5 years after surgery.At present,imaging examination and other diagnostic methods have some shortcomings such as invasiveness and non-specificity.Therefore,it is urgent to develop a simple,rapid,noninvasive,highly sensitive and highly specific strategy to diagnose UC.Herein,a high-performance fluorescence sensor was constructed by the plasmonic gold nanorods(AuNRs)-enhanced near-infrared(NIR)fluorescence of silver sulfide quantum dots(Ag_(2)S QDs).The designed sensor can be used for the fast and accurate detection of small molecule single-transmembrane protein(FXYD3),which is overexpressed in 90%of ureteral cancers and 84%of high-grade bladder cancers.Due to its high specificity,the NIR fluorescence sensor achieves the detection of FXYD3 in the range of 0.25-150 ng·ml^(-1)with a detection limit of 0.2 ng·ml^(-1).Importantly,it also can be used for accurate diagnosis of FXYD3 in the urine of patients with relevant cancers,and the results are consistent with clinical cystoscopy and pathological analysis.The proposed fluorescence sensor provides a simple,ultrasensitive,reliable method for UC screening,tumor-grade classification and postoperative monitoring and will have great potential for clinical applications.展开更多
AIM: To identify clinicopathologic factors influencing the accuracy of a high-frequency catheter probe endoscopic ultrasonography (EUS) for superficial esophageal carcinomas (SECs).
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinc...A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.展开更多
How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the...How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.展开更多
This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS)equation.This model describes the(2+1)–dimensional interaction between Riemann-wave propagation al...This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS)equation.This model describes the(2+1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave.The extended simplest equation(ESE)method is applied to the model,and a variety of novel solitarywave solutions is given.These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma.The accuracy of the obtained solution is verified using a variational iteration(VI)semi-analytical scheme.The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained.The adopted scheme’s performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.展开更多
Based on investigation and research, according to the current actual production of sugarcane, the occurrence dynamics and outbreak causes of important pests and diseases that seriously affect sugarcane production were...Based on investigation and research, according to the current actual production of sugarcane, the occurrence dynamics and outbreak causes of important pests and diseases that seriously affect sugarcane production were summarized, and accurate and efficient green prevention and control technology was put forward according to the occurrence and damage characteristics of important pests and diseases, such as strengthening sugarcane introduction and quarantine, breeding and selecting varieties resistant to diseases and pests, promoting the use of detoxified healthy seedlings vigorously, applying lamp trapping technology on a large scale, scientifically guiding and promoting biological prevention and control technology, practically promoting the precise and efficient application of slow-release long- acting and low toxic pesticides, strengthening field management, spraying pesticides in time at the early stage of a disease, and doing a good job of monitoring and emergency prevention and control of sudden pests.展开更多
Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by ...Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars,China(No.51625501)Aeronautical Science Foundation of China(No.20240046051002)National Natural Science Foundation of China(No.52005028).
文摘Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.
基金The National Natural Science Foundation of China(No.52107039)the Fujian Provincial Natural Science Foundation for Youth(No.2021J05133)the Key Project of the National Natural Science Foundation of China(No.51937002)。
文摘The axial field hybrid permanent magnet memory machine(AFHPM-MM)employs a hybrid permanent magnet excitation combining NdFeB and AlNiCo,achieving high torque density and a wide flux adjustment range.A separated stator structure is adopted to enhance its antidemagnetization capability.To analyze the contributions of AlNiCo and NdFeB to the induced electromotive force(EMF)in the AFHPM-MM,a frozen permeability-based induced EMF calculation method is proposed.Theoretical analysis reveals that the conventional method exhibits substantial errors in calculating the AlNiCo-induced EMF,primarily attributed to its failure to adequately account for the dynamic magnetization characteristic discrepancies of AlNiCo under varying magnetization states.Through the analysis of magnetization variations in AlNiCo during the flux adjustment process under different magnetization states,an improved induced EMF calculation method is proposed.Comparative results indicate that,during the flux enhancement process,the average calculation error of the AlNiCo-induced EMF is reduced from 19.84%to 2.09%,whereas during the flux weakening process,the error is reduced from 3.87%to 1.67%.The proposed method achieves accurate induced EMF calculation for the AFHPM-MM.
基金funded by the National Natural Science Foundation of China(62273213,62472262,62572287)Natural Science Foundation of Shandong Province(ZR2024MF144)+1 种基金Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)Taishan Scholarship Construction Engineering.
文摘Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.
基金funded by the Jiangsu Province Postgraduate Scientific Research and Practice Innovation Program(SJCX240449)projectthe Nanjing University of Information Science and Technology Talent Startup Fund(2022r078).
文摘Camera Pose Estimating from point and line correspondences is critical in various applications,including robotics,augmented reality,3D reconstruction,and autonomous navigation.Existing methods,such as the Perspective-n-Point(PnP)and Perspective-n-Line(PnL)approaches,offer limited accuracy and robustness in environments with occlusions,noise,or sparse feature data.This paper presents a unified solution,Efficient and Accurate Pose Estimation from Point and Line Correspondences(EAPnPL),combining point-based and linebased constraints to improve pose estimation accuracy and computational efficiency,particularly in low-altitude UAV navigation and obstacle avoidance.The proposed method utilizes quaternion parameterization of the rotation matrix to overcome singularity issues and address challenges in traditional rotation matrix-based formulations.A hybrid optimization framework is developed to integrate both point and line constraints,providing a more robust and stable solution in complex scenarios.The method is evaluated using synthetic and realworld datasets,demonstrating significant improvements in performance over existing techniques.The results indicate that the EAPnPL method enhances accuracy and reduces computational complexity,making it suitable for real-time applications in autonomous UAV systems.This approach offers a promising solution to the limitations of existing camera pose estimation methods,with potential applications in low-altitude navigation,autonomous robotics,and 3D scene reconstruction.
基金supported by the Project of National Natural Science Foundation of China under Grant 52077122。
文摘With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment.
基金supported by Guangzhou Science and Technology Planning Project(2023A04J0131)Special fund for scientific innovation strategyconstruction of high level Academy of Agriculture Science(R2020PY-JG009,R2022PY-QY007,202106TD)+2 种基金China Agriculture Research System-CARS-35the Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2022KJ126)Special Fund for Rural Revitalization Strategy of Guangdong(2023TS-3),China。
文摘Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
文摘The accurately targeted poverty alleviation has gradually become one of the important research directions in the field of poverty research. The existing foreign and domestic studies concerning about the accurately targeted poverty alleviation are few and mainly focus on the aspects such as poverty object recognition, target for poverty alleviation, and fund embarking; a complete system has not yet been formed for the relevant studies. On the basis of analyzing and reviewing relevant studies on the accurately targeted poverty alleviation at home and abroad, a further research direction for the accurately targeted poverty alleviation is proposed in this paper.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.20903002, No.21273211, No.9112T042, and No.21373194) and the Anhui Provin- cial Natural Science Foundation (No.1408085MA18), and the National Key Basic Research Special Founda- tion (No.2013CB834602 and No.2010CB923300).
文摘The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205151)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2014YQ060537)the National Basic Research Program,China(Grant No.2013CB632803)
文摘An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.
基金This work is supported by National Key Research and Development Program of China(2016YFC1100600)the National Natural Science Foundation of China(81972058 and 81902194)the Multicenter Clinical Research Project of Shanghai Jiao Tong University School of Medicine(DLY201506).
文摘Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.
基金financially supported in part by the National Natural Science Foundation of China(Nos.22005081,51873222 and 52111530128)Zhejiang Provincial Natural Science Foundation of China(Nos.LY22B050003 and LZ22B050001)+1 种基金the Funding for the Scientific Research Foundation for Scholars of Hangzhou Normal University(Nos.4095C5021920467 and 4095C5021920452)the Key Research and Development Projects of Anhui Province(Nos.202004g01020016 and 202104g01020009)。
文摘Urothelial carcinoma(UC)is a common malignant tumor in the urinary system with high recurrence rate and low survival rate 5 years after surgery.At present,imaging examination and other diagnostic methods have some shortcomings such as invasiveness and non-specificity.Therefore,it is urgent to develop a simple,rapid,noninvasive,highly sensitive and highly specific strategy to diagnose UC.Herein,a high-performance fluorescence sensor was constructed by the plasmonic gold nanorods(AuNRs)-enhanced near-infrared(NIR)fluorescence of silver sulfide quantum dots(Ag_(2)S QDs).The designed sensor can be used for the fast and accurate detection of small molecule single-transmembrane protein(FXYD3),which is overexpressed in 90%of ureteral cancers and 84%of high-grade bladder cancers.Due to its high specificity,the NIR fluorescence sensor achieves the detection of FXYD3 in the range of 0.25-150 ng·ml^(-1)with a detection limit of 0.2 ng·ml^(-1).Importantly,it also can be used for accurate diagnosis of FXYD3 in the urine of patients with relevant cancers,and the results are consistent with clinical cystoscopy and pathological analysis.The proposed fluorescence sensor provides a simple,ultrasensitive,reliable method for UC screening,tumor-grade classification and postoperative monitoring and will have great potential for clinical applications.
基金Supported by A grant of the Korea Healthcare Technology R and D Project,Ministry of Health and Welfare,Republic of Ko-rea,No.A121994
文摘AIM: To identify clinicopathologic factors influencing the accuracy of a high-frequency catheter probe endoscopic ultrasonography (EUS) for superficial esophageal carcinomas (SECs).
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(No.2019JQ-711)。
文摘A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.
基金Project supported by the National Natural Science Foundation of China (No. 50905161)the Natural Science Foundation of Zhejiang Province (No. Y1110339)the Fundamental Research Funds for the Central Universities of China (No. 2010QNA4024)
文摘How to obtain an accurate support for large components by ball joint is a key process in aircraft digital assembly. A novel principle and device is developed to solve the problem. Firstly, the working principle of the device is introduced. When three or four displacement sensors installed in the localizer are touched by the ball-head, the spatial relation is calculated between the large aircraft component's ball-head and the localizer's ball-socket. The localizer is driven to achieve a new position by compensation. Relatively, a support revising algorithm is proposed. The localizer's ball-socket approaches the ball-head based on the displacement sensors. According to the points selected from its spherical surface, the coordinates of ball-head spherical center are computed by geometry. Finally, as a typical application, the device is used to conduct a test-fuselage's ball-head into a localizer's ball-socket. Positional deviations of the spherical centers between the ball-head and the ball-socket in the x, y, and z directions are all controlled within ±0.05 mm under various working conditions. The results of the experiments show that the device has the characteristics of high precision, excellent stability, strong operability, and great potential to be applied widely in the modern aircraft industry.
基金supported by Taif University Researchers Supporting Project Number(TURSP-2020/247)funding this work through research group under grant number(RGP.2/121/42)。
文摘This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS)equation.This model describes the(2+1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave.The extended simplest equation(ESE)method is applied to the model,and a variety of novel solitarywave solutions is given.These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma.The accuracy of the obtained solution is verified using a variational iteration(VI)semi-analytical scheme.The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained.The adopted scheme’s performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.
基金Supported by Sugar Crop Research System(CARS-170303)Training Project of "Yunling Industry Technology Leading Talent"(2018LJRC56)Special Funds for Construction of Modern Agricultural Industrial Technology System of Yunnan Province(YNGZTX-4-92)
文摘Based on investigation and research, according to the current actual production of sugarcane, the occurrence dynamics and outbreak causes of important pests and diseases that seriously affect sugarcane production were summarized, and accurate and efficient green prevention and control technology was put forward according to the occurrence and damage characteristics of important pests and diseases, such as strengthening sugarcane introduction and quarantine, breeding and selecting varieties resistant to diseases and pests, promoting the use of detoxified healthy seedlings vigorously, applying lamp trapping technology on a large scale, scientifically guiding and promoting biological prevention and control technology, practically promoting the precise and efficient application of slow-release long- acting and low toxic pesticides, strengthening field management, spraying pesticides in time at the early stage of a disease, and doing a good job of monitoring and emergency prevention and control of sudden pests.
文摘Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.