期刊文献+
共找到1,838篇文章
< 1 2 92 >
每页显示 20 50 100
Evaluation of the Performance of Lithium-Ion Accumulators for Photovoltaic Energy Storage
1
作者 Toussaint Tilado Guingane Dominique Bonkoungou +4 位作者 Eric Korsaga Dieudonné Simpore Soumaila Ouedraogo Zacharie Koalaga François Zougmore 《Energy and Power Engineering》 2023年第12期517-526,共10页
In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globall... In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology. 展开更多
关键词 Photovoltaic Energy Energy Storage Lithium-Ion Accumulator MODELING MATLAB/Simulink Simulation
在线阅读 下载PDF
Multifunctional MXene for Thermal Management in Perovskite Solar Cells
2
作者 Zhongquan Wan Runmin Wei +5 位作者 Yuanxi Wang Huaibiao Zeng Haomiao Yin Muhammad Azam Junsheng Luo Chunyang Jia 《Nano-Micro Letters》 2026年第1期458-473,共16页
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot... Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics. 展开更多
关键词 Perovskite solar cells Heat accumulation Thermal management Multifunctional MXene Defect passivation
在线阅读 下载PDF
Blockchain state channels with compact states through the use of RSA accumulators
3
作者 Lydia Negka Angeliki Katsika +1 位作者 Georgios Spathoulas Vassilis Plagianakos 《Blockchain(Research and Applications)》 2023年第1期71-89,共19页
One of the major concerns regarding currently proposed public blockchain systems relates to the feasible transaction processing rate.It is common for such systems to limit this rate to maintain the required levels of ... One of the major concerns regarding currently proposed public blockchain systems relates to the feasible transaction processing rate.It is common for such systems to limit this rate to maintain the required levels of security and decentralisation.State channels are an approach to overcome this limitation,as they aim to decrease the required on-chain transactions for a given application and thus indirectly increase the capacity(in terms of applications)of public blockchain systems.In the present paper,we propose a state channel design that,through the use of RSA accumulators,operates on a compact state structure.This scheme is optimal for applications whose state includes large sets of elements.The novel state channel design is presented by analysing all state channel operations and how they have to be revised.The security of the design is discussed,while a practical use case scenario regarding the use of the design for an on-chain asset(e.g.,non-fungible tokens)exchange application is also analysed. 展开更多
关键词 Blockchain State channels accumulators Layer 2 NFTs
原文传递
Long noncoding RNA GAS5 acts as a competitive endogenous RNA to regulate GSK-3β and PTEN expression by sponging miR-23b-3p in Alzheimer's disease
4
作者 Li Zeng Kaiyue Zhao +5 位作者 Jianghong Liu Mimin Liu Zhongdi Cai Ting Sun Zhuorong Li Rui Liu 《Neural Regeneration Research》 2026年第1期392-405,共14页
Long noncoding RNA and microRNA are regulatory noncoding RNAs that are implicated in Alzheimer's disease, but the role of long noncoding RNA-associated competitive endogenous RNA has not been fully elucidated. The... Long noncoding RNA and microRNA are regulatory noncoding RNAs that are implicated in Alzheimer's disease, but the role of long noncoding RNA-associated competitive endogenous RNA has not been fully elucidated. The long noncoding RNA growth arrest-specific 5(GAS5) is a member of the 5′-terminal oligopyrimidine gene family that may be involved in neurological disorders, but its role in Alzheimer's disease remains unclear. This study aimed to investigate the function of GAS5 and construct a GAS5-associated competitive endogenous RNA network comprising potential targets. RNA sequencing results showed that GAS5 was upregulated in five familial Alzheimer's disease(5×FAD) mice, APPswe/PSEN1dE9(APP/PS1) mice, Alzheimer's disease-related APPswe cells, and serum from patients with Alzheimer's disease. Functional experiments with targeted overexpression and silencing demonstrated that GAS5 played a role in cognitive dysfunction and multiple Alzheimer's disease-associated pathologies, including tau hyperphosphorylation, amyloid-beta accumulation, and neuronal apoptosis. Mechanistic studies indicated that GAS5 acted as an endogenous sponge by competing for microRNA-23b-3p(miR-23b-3p) binding to regulate its targets glycogen synthase kinase 3beta(GSK-3β) and phosphatase and tensin homologue deleted on chromosome 10(PTEN) expression in an Argonaute 2-induced RNA silencing complex(RISC)-dependent manner. GAS5 inhibited miR-23b-3p-mediated GSK-3β and PTEN cascades with a feedforward PTEN/protein kinase B(Akt)/GSK-3β linkage. Furthermore, recovery of GAS5/miR-23b-3p/GSK-3β/PTEN pathways relieved Alzheimer's disease-like symptoms in vivo, indicated by the amelioration of spatial cognition, neuronal degeneration, amyloid-beta load, and tau phosphorylation. Together, these findings suggest that GAS5 promotes Alzheimer's disease pathogenesis. This study establishes the functional convergence of the GAS5/miR-23b-3p/GSK-3β/PTEN pathway on multiple pathologies, suggesting a candidate therapeutic target in Alzheimer's disease. 展开更多
关键词 Alzheimer's disease amyloid-beta peptide accumulation cognitive dysfunction competitive endogenous RNA glycogen synthase kinase 3beta lncRNA growth arrest-specific 5 microRNA-23b-3p neuronal apoptosis phosphatase and tensin homologue deleted on chromosome 10 tau phosphorylation
暂未订购
Aluminum-activated Oxalate Secretion does not Associate with Internal Content among Some Oxalate Accumulators 被引量:4
5
作者 Jian Li Yang LeiZhang Shao Jian Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第9期1103-1107,共5页
Although aluminum (AI)-activated secretion of oxalate has been considered to be an important AI-exclusion mechanism, whether it is a general response in oxalate accumulators and related to oxalate content in roots a... Although aluminum (AI)-activated secretion of oxalate has been considered to be an important AI-exclusion mechanism, whether it is a general response in oxalate accumulators and related to oxalate content in roots are still not clear. Here, we examined the oxalate secretion and oxalate content in some oxalate accumulators, and investigated the role of oxalate secretion in AI resistance. When oxalate content in amaranth roots was decreased by about 50% with the increased ratio of NH4^+-N to NO3^- -N in nutrient solution, the amount of AI-activated oxalate secretion still remained constant. There was no relationship between the content of the water soluble oxalate in four species of oxalate accumulators and the amount of the AI-activated oxalate secretion in roots. Furthermore, oxalate secretion is poorly associated with AI resistance among these species. Based on the above results, we concluded that although all of the oxalate accumulators tested could secrete oxalate rapidly, the density of anion channels in plasma membrane may play a more important role in AI-activated oxalate secretion. 展开更多
关键词 aluminum toxicity AMARANTHUS anion channel oxalate accumulator oxalate secretion
原文传递
New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression,Tarim Basin,NW China 被引量:3
6
作者 WANG Qinghua YANG Haijun YANG Wei 《Petroleum Exploration and Development》 2025年第1期79-94,共16页
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es... Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment. 展开更多
关键词 Tarim Basin Kuqa Depression ultra-deep layers clastic rock multi-layer structural deformation multilayered migration and accumulation new three-dimensional accumulation model
在线阅读 下载PDF
Roles of extracellular polymeric substances in arsenic accumulation and detoxification by cell wall intact and mutant strains of Chlamydomonas reinhardtii 被引量:1
7
作者 Sadiq Naveed Qingnan Yu +3 位作者 Katarzyna Szewczuk-Karpisz Chunhua Zhang Shafeeq-Ur Rahman Ying Ge 《Journal of Environmental Sciences》 2025年第6期142-154,共13页
Arsenic(As)pollution seriously threatens human and ecological health.Microalgal cell wall and extracellular polymeric substances(EPS)are known to interactwith As,but their roles in the As resistance,accumulation and s... Arsenic(As)pollution seriously threatens human and ecological health.Microalgal cell wall and extracellular polymeric substances(EPS)are known to interactwith As,but their roles in the As resistance,accumulation and speciation inmicroalgae remain unclear.Here,we used two strains of Chlamydomonas reinhardtii,namely CC-125(wild type)and CC-503(cell walldeficientmutant),to examine the algal growth,EPS synthesis,As adsorption,absorption and transformation under 10–1000μg/L As(III)and As(V)treatments for 96 h.In both strains,the As absorption increased after the EPS removal,but the growth,As adsorption,and transformation of C.reinhardtii declined.The CC-125 strain was more tolerant to As stress and more efficient in EPS production,As accumulation,and redox transformation than CC-503,irrespective of EPS presence or absence.Three-dimension excitation-emission matrix(3DEEM)and attenuated total reflectance infrared spectroscopy(ATR-IR)analyses showed that As was bound with functional groups in the EPS and cell wall,such as-COOH,NH and-OH in proteins,polysaccharides and amino acids.Together,this study demonstrated that EPS and cell wall acted as barriers to lower the As uptake by C.reinhardtii.However,the cell wall mutant strain wasmore susceptible to As toxicity due to lower EPS induction and higher As absorption. 展开更多
关键词 Extracellular polymeric substances Cell wall ARSENIC ACCUMULATION Speciation MICROALGAE
原文传递
Genome-wide identifcation of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4 被引量:1
8
作者 Jing Zhou Bingshuai Du +4 位作者 Yibo Cao Kui Liu Zhihua Ye Yiming Huang Lingyun Zhang 《Journal of Integrative Agriculture》 2025年第9期3494-3510,共17页
Sucrose transporters(SUTs)play a crucial role in carbon allocation from the source leaf to the sink end,and the function of SUTs varies among family members.However,the genome-wide identifcation of the SUT superfamily... Sucrose transporters(SUTs)play a crucial role in carbon allocation from the source leaf to the sink end,and the function of SUTs varies among family members.However,the genome-wide identifcation of the SUT superfamily in Camellia oleifera is lacking,and their biological function remains elusive.In this study,four SUT genes-designated Co SUT1-4-were identifed in C.oleifera through a genome-wide analysis and classifed into three subfamilies.We used a combination of cis-acting elements analysis,mRNA quantifcation,histochemical analysis,and heterologous transformation to evaluate the expression profiles and functions of these SUTs.A key finding is that CoSUT4,localized on the plasma membrane,is highly expressed in mature leaves and the early stage of seed development in C.oleifera.In vitro culture of C.oleifera seed revealed the responsiveness of CoSUT4 to various exogenous hormones such as ABA and GA.CoSUT4 was able to restore the growth of the yeast strain SUSY7/ura3(a sucrose transport-defcient mutant)on sucrose-containing media and specifcally contributed to sucrose translocation and tissue growth in CoSUT4-overexpressed apple calli.In situ hybridization identifed chalazal nucellus and transfer cells as the action sites of CoSUT4 at the maternal-flial interface mediating sucrose transportation in oil tea seeds.CoSUT4 overexpression in Arabidopsis thaliana atsuc4 mutant restored the growth and seed yield defciencies of the mutant,leading to an increase in flled seeds and oil content.Additionally,CoSUT4 overexpression enhanced the drought and salt stress tolerance by augmenting sugar content.Overall,these fndings provide valuable insights into the function of SUTs and present promising candidates for the genetic enhancement of seed production in C.oleifera. 展开更多
关键词 Camellia oleifera sucrose transporter genome-wide analysis sugar accumulation abiotic stress
在线阅读 下载PDF
Weathering Process of Parent Material and Accumulation Process of Organic Carbon on the Black Soil Profile:A Case Study from the Keshan Area of the Songnen Plain in Northeast China 被引量:1
9
作者 XIA Rui YUAN Guoli +5 位作者 CUI Minli HOU Hongxing YU Guangming GE Liangsheng LU Kaining REN Bingzhang 《Acta Geologica Sinica(English Edition)》 2025年第1期258-271,共14页
Black soil is essential for maintaining regional food security and promoting global agricultural production.Understanding the weathering process of parent material and the accumulation of organic carbon is crucial to ... Black soil is essential for maintaining regional food security and promoting global agricultural production.Understanding the weathering process of parent material and the accumulation of organic carbon is crucial to comprehending the developmental history and future trends of black soil,especially against the background of large-scale global cultivation and climate change.Although the importance of black soil formation and evolution cannot be ignored,the relevant research is still very scarce.In this study,a typical eight-meter-deep soil core was collected from the Keshan area of the Songnen Plain,Northeast China,where surface black soil developed on paleo-sediments.Using^(14)C dating,the formation age of the black soil was determined.Based on the characteristics of the geochemical composition,grain size and the magnetic susceptibility of the sediments,it was demonstrated that the black soil and its parent material originated from reworked loess.Furthermore,the mass transfer coefficient(τ)of some elements was determined,in order to explore the soil weathering process.By calculating the transported amount of alkaline and alkaline-earth elements,the weathering rate of parent material to black soil was found to be weak,at 0.16 kEq·ha^(-1)·year^(-1).Combining the results of dating and carbon density in the different layers of black soil,the accumulation rate of organic carbon was determined as follows:rapidly increasing in the initial period of 13.2-2.2 ka,reaching its maximum average value of 34.0 g·cm^(-2)·a^(-1)at 2.2-0.8 ka,then showing a decreasing trend with an average value of-77.5 g·cm^(-2)·a^(-1).Compared with regional climate change,Keshan black soil has developed under a colder and wetter climate during the Holocene.Predictably,ongoing global warming may lead to the degradation of black soils in the Songnen Plain,as well as in other regions.Our results will enrich geological knowledge of black soil formation and future evolutionary trends. 展开更多
关键词 black soil PROVENANCE weathering rate organic carbon accumulation rate Songnen Plain
在线阅读 下载PDF
Reservoir Forming Conditions and Models of Oil Sands in Northwestern Margin of Junggar Basin,China 被引量:1
10
作者 Xiaoping Ma Xinguo Zhuang +6 位作者 Yunlong He Jibin Zhou Meng Wang Baoqing Li Zhenlong Dai Xudong Fan Haihuai Sun 《Journal of Earth Science》 2025年第2期611-626,共16页
The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it i... The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it is of great scientific significance to study the accumulation conditions of oil sand in different strata and mining areas of the Junggar Basin.Through a large number of field investigations,drilling verification and sampling tests,it is found that the oil sand in the region covers an area of 2000 km^(2),with shallow and thick reservoir,and predicted resource of 180 million tons.The oil sand resources are mainly distributed in four geological strata,namely the Middle Triassic Karamay Formation,Early Jurassic Badaowan Formation,Late Jurassic Qigu Formation,and Early Cretaceous Qingshuihe Formation.The reservoir is mainly composed of sandstone with high porosity and permeability,and the reservoir space is mainly intergranular pores with a medium average oil content.The oil sand deposit in the region is a typical destructive oil reservoir.The crude oil in the oil sand layer is degraded and thickened from the deep to the shallow,the content of saturated hydrocarbon decreased,and the content of aromatic hydrocarbon,non-hydrocarbon and asphaltene increased.The oil source comes from the deep Permian hydrocarbon-generating depression.Unconformities,faults and marginal fan delta-braided river depositional systems constitute effective migration and storage systems.Caprocks of the Upper Triassic Baijiantan Formation,Lower Jurassic Sangonghe Formation and Lower Cretaceous Hutubihe Formation were formed by three large scale lake transgressions.The Indosinian,Yanshan and Late Yanshan movements are the main driving forces for the migration of deep oil and gas to the shallow edge to form oil sand deposits.It is considered that the oil sand in the northwestern margin of Junggar Basin is of a slope complex migration type. 展开更多
关键词 oil sand reservoir forming conditions accumulation model Junggar Basin petroleum geology
原文传递
Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling 被引量:1
11
作者 Yangyang Sun Haibin Liu +2 位作者 Ruishan Xie Ying Chen Shujun Chen 《Journal of Materials Science & Technology》 2025年第2期168-181,共14页
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency... Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect. 展开更多
关键词 Friction rolling additive manufacturing Al-Li alloy Plasma preheating Instant cooling Heat accumulation Microstructure
原文传递
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
12
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Water deficit affects the nitrogen nutrition index of winter wheat under controlled water conditions 被引量:1
13
作者 Ben Zhao Anzhen Qin +7 位作者 Wei Feng Xinqiang Qiu Pingyan Wang Haixia Qin Yang Gao Guojie Wang Zhandong Liu Syed Tahir Ata-Ul-Karim 《Journal of Integrative Agriculture》 2025年第2期724-738,共15页
Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N... Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status. 展开更多
关键词 critical nitrogen concentration shoot biomass plant nitrogen accumulation soil nitrate N concentration soil water content
在线阅读 下载PDF
Spraying Arginine at 5 Days before Harvest Delays Postharvest Broccoli Senescence via Nutrient Accumulation
14
作者 SUN Yupeng CHEN Ying +4 位作者 SHANG Qingwen GUO Yanyin ZHANG Yuxiao WANG Yunqiao XUE Qingyue 《食品科学》 EI CAS 北大核心 2025年第1期131-141,共11页
To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conduct... To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments. 展开更多
关键词 ARGININE BROCCOLI preharvest spraying nutrient accumulation storage quality postharvest senescence
在线阅读 下载PDF
Mechanism of work hardening and softening behavior of AZ31 magnesium alloy sheets with hard plate accumulative roll bonding 被引量:1
15
作者 Lu Sun Feng Li +2 位作者 Jia Yang Zhang Wen Tao Niu Mu Zi Cao 《Journal of Magnesium and Alloys》 2025年第7期3430-3449,共20页
In this paper,the work hardening and softening behavior of AZ31 magnesium alloy sheets by hard plate accumulative roll bonding(HP-ARB)process in a specific temperature range was studied for the first time,and the cycl... In this paper,the work hardening and softening behavior of AZ31 magnesium alloy sheets by hard plate accumulative roll bonding(HP-ARB)process in a specific temperature range was studied for the first time,and the cyclic stress relaxation test,EBSD,TEM and other characterization methods were used.When the rolling temperature is 350℃,the grain size of magnesium sheets is refined to 4.32(±0.36)μm on average,and it shows an excellent combination of strength and plasticity.The tensile strength reaches 307(±8.52)MPa and the elongation is 12.73(±0.84)%.At this time,the curve of work hardening rate decreases smoothly and the degree of hardening is the lowest,and the amplitude of stress drop △σ_(p) in work softening test is the smallest with the increase of cycle times,which shows that the well coordination between work hardening and softening behavior has been achieved.Research has found that the combined effect of grain boundary strengthening and fine grain strengthening enhances the yield and tensile strength of magnesium sheets after three passes HP-ARB process at 350℃.This is attributed to the high degree of dislocation slip opening in the pyramidal surfaceand<c+a>,which not only coordinates the c-axis strain of the entire grain,but also promotes the slip transfer of dislocations in the fine-grained region,significantly improving the elongation of the sheets.This study provides a new idea for the forming and manufacturing of high performance magnesium alloy sheets. 展开更多
关键词 Magnesium alloy Hard plate accumulative roll bonding Rolling temperature Work hardening and softening behavior
在线阅读 下载PDF
Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures 被引量:1
16
作者 LI Guoxin JIA Chengzao +2 位作者 ZHAO Qun ZHOU Tianqi GAO Jinliang 《Petroleum Exploration and Development》 2025年第1期33-49,共17页
Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in c... Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in coal rocks.Inspired by the discovery of shale oil and gas,and guided by“the overall exploration concept of considering coal rock as reservoir”,breakthroughs in the exploration and development of coal-rock gas have been achieved in deep coal seams with favorable preservation conditions,thereby opening up a new development frontier for the unconventional gas in coal-rock reservoirs.Based on the data from exploration and development practices,a systematic study on the accumulation mechanism of coal-rock gas has been conducted.The mechanisms of“three fields”controlling coal-rock gas accumulation are revealed.It is confirmed that the coal-rock gas is different from CBM in accumulation process.The whole petroleum systems in the Carboniferous–Permian transitional facies coal measures of the eastern margin of the Ordos Basin and in the Jurassic continental facies coal measures of the Junggar Basin are characterized,and the key research directions for further developing the whole petroleum system theory of coal measures are proposed.Coal rocks,compared to shale,possess intense hydrocarbon generation potential,strong adsorption capacity,dual-medium reservoir properties,and partial or weak oil and gas self-sealing capacity.Additionally,unlike other unconventional gas such as shale gas and tight gas,coal-rock gas exhibits more complex accumulation characteristics,and its accumulation requires a certain coal-rock play form lithological and structural traps.Coal-rock gas also has the characteristics of conventional fractured gas reservoirs.Compared with the basic theory and model of the whole petroleum system established based on detrital rock formations,coal measures have distinct characteristics and differences in coal-rock reservoirs and source-reservoir coupling.The whole petroleum system of coal measures is composed of various types of coal-measure hydrocarbon plays with coal(and dark shale)in coal measures as source rock and reservoir,and with adjacent tight layers as reservoirs or cap or transport layers.Under the action of source-reservoir coupling,coal-rock gas is accumulated in coal-rock reservoirs with good preservation conditions,tight oil/gas is accumulated in tight layers,conventional oil/gas is accumulated in traps far away from sources,and coalbed methane is accumulated in coal-rock reservoirs damaged by later geological processes.The proposed whole petroleum system of coal measures represents a novel type of whole petroleum system. 展开更多
关键词 coal measure coal-rock gas coalbed methane tight gas coal-rock play accumulation mechanism whole petroleum system whole petroleum system of coal measures
在线阅读 下载PDF
Accumulation mechanism and enrichment model of deep tight sandstone gas in second member of Upper Triassic Xujiahe Formation,Xinchang structural belt,Sichuan Basin,SW China 被引量:1
17
作者 XIONG Liang CHEN Dongxia +3 位作者 YANG Yingtao ZHANG Ling LI Sha WANG Qiaochu 《Petroleum Exploration and Development》 2025年第4期907-920,共14页
Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was ... Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness. 展开更多
关键词 Upper Triassic second member of the Xujiahe Formation tight sandstone gas reservoir enrichment mechanism hydrocarbon accumulation model Xinchang structural belt Sichuan Basin
在线阅读 下载PDF
Main factors controlling unconventional gas enrichment and high production in the first member of Permian Maokou Formation,southeastern Sichuan Basin,SW China 被引量:1
18
作者 HE Guisong SUN Bin +4 位作者 GAO Yuqiao ZHANG Peixian ZHANG Zhiping CAI Xiao XIA Wei 《Petroleum Exploration and Development》 2025年第2期408-421,共14页
Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore... Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas. 展开更多
关键词 Sichuan Basin PERMIAN Maokou Formation unconventional natural gas main controlling factors of enrichment and high production accumulation model carbonate rock southeastern Sichuan Basin
在线阅读 下载PDF
Whole petroleum system and main controlling factors of hydrocarbon accumulation in the Mesozoic of Ordos Basin,NW China
19
作者 DENG Xiuqin BAI Bin 《Petroleum Exploration and Development》 2025年第5期1150-1163,共14页
Based on the investigation of sedimentary filling characteristics and pool-forming factors of the Mesozoic in the Ordos Basin,the whole petroleum system in the Mesozoic is divided,the migration&accumulation charac... Based on the investigation of sedimentary filling characteristics and pool-forming factors of the Mesozoic in the Ordos Basin,the whole petroleum system in the Mesozoic is divided,the migration&accumulation characteristics and main controlling factors of conventional-unconventional hydrocarbons are analyzed,and the whole petroleum system model is established.First,the whole petroleum system developed in the Mesozoic takes the high-quality source rocks of the 7th member of the Triassic Yanchang Formation as the core and mainly consists of low-permeability and unconventional oil and gas reservoirs.It can be divided into four hydrocarbon accumulation domains,including intra-source retained hydrocarbon accumulation domain,near-source tight hydrocarbon accumulation domain,far-source conventional hydrocarbon accumulation domain and transitional hydrocarbon accumulation domain,which together form a continuous,symbiotic,and orderly accumulation entity wherein unconventional resources significantly outweigh conventional ones in proportion.Second,the spatial core area of sedimentary filling is the oil-rich core of the whole petroleum system.From the core to the periphery,the reservoir type evolves as shale oil→tight oil→conventional oil,the accumulation power is dominated by overpressure→buoyancy or overpressure and capillary force,the accumulation scale changes from extensive hundreds of millions of tons to a isolated hundreds of thousands-million of tons,and the gas-oil ratio and methane content decrease.Third,the sedimentary filling system provides the material basis and spatial framework for the whole petroleum system,the superimposed sand body,fault and unconformity constitute the dominant migration pathway of hydrocarbons in the far-source conventional hydrocarbon accumulation domain and the transitional hydrocarbon accumulation domain,the high-quality source rocks provide a solid resource basis for shale oil,and the micro-nano pore throat-fracture network constitute unconventional accumulation space.The hydrocarbon migration and accumulation process is mainly controlled by intense expulsion of hydrocarbon under overpressure in the pool-forming stage and the in-situ re-enrichment controlled by underpressure in post-pool-forming stage.The oil-gas enrichment and long-term preservation depends on the coordination among three factors(stable geological structure,multi-cycle sedimentation,and dual self-sealing).Fourth,the whole petroleum system model is defined as four domains,overpressure+underpressure drive,and dual self-sealing. 展开更多
关键词 whole petroleum system Ordos Basin MESOZOIC hydrocarbon accumulation domain continuous accumulation orderly accumulation accumulation power dual self-sealing preservation
在线阅读 下载PDF
Maize yield in a strip-till system can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage in Northeast China
20
作者 Ye Sha Yi Huang +7 位作者 Zhanhong Hao Mingyang Gao Jiawei Jiang Wenlang Hu Jingran Zhang Zheng Liu Xinhua Sui Guohua Mi 《The Crop Journal》 2025年第1期257-268,共12页
Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize un... Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize under ST compared to conventional tillage(CT)remains unstable,and the strategies to increase maize yield under ST are unclear.This study aims to understand the physiological mechanism underlining maize yield formation under ST by comparing two maize cultivars,DKM753 and DK517,with contrasting yield performance in ST versus CT systems.Compared to CT,ST resulted in a 4.5%yield increase for DKM753 but a 5.6%decrease for DK517.These yield differences were primarily attributed to variations in grain number per ear(GN).During the rapid growth stage(V14-R3),i.e.,two weeks before and after silking,DKM753 showed a 6.7%increase in maximum growth rate(V_(max))and a 6.3%increase in average growth rate(V)under ST,whereas DK517 exhibited decline of 8.5%in V_(max) and 12.3%in V.Significant positive correlations are observed between V_(max) and V with GN under ST(R^(2)=0.79 and R^(2)=0.90,respectively).Enhanced dry matter accumulation in DKM753 under ST was attributed to increased leaf expansion rates,contributing to a larger photosynthate source.The straw mulching and localized nitrogen fertilization increased root-zone nitrogen availability at silking in ST compared to CT.DKM753 had a greater root system which made better use of the soil N and lead to an increased leaf nitrogen accumulation by 14.9%under ST.It is concluded that maize yield under the strip-till system is determined by grain number per ear,which can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage.A sound root system can efficiently utilize soil nitrogen resources under the strip-till system,increasing plant nitrogen accumulation and thereby promoting plant growth. 展开更多
关键词 Strip-till system Maize yield Dry matter accumulation Ear development Nitrogen accumulation
在线阅读 下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部