期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Enrichment mechanisms and accumulation model of ultra-deep water and ultra-shallow gas:A case study of Lingshui 36-1 gas field in Qiongdongnan Basin,South China Sea
1
作者 XU Changgui WU Keqiang +1 位作者 PEI Jianxiang HU Lin 《Petroleum Exploration and Development》 2025年第1期50-63,共14页
Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on t... Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on the source,reservoir-cap conditions,trap types,migration and accumulation characteristics,enrichment mechanisms,and reservoir formation models of ultra-deep water and ultra-shallow natural gas,taking the Lingshui 36-1 gas field as an example.(1)The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas,and dominated by thermogenic gas.(2)The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone.(3)The types of cap rocks include deep-sea mudstone,mass transport deposits mudstone,and hydrate-bearing formations.(4)The types of traps are mainly lithological,and also include structural-lithological traps.(5)The migration channels include vertical transport channels such as faults,gas chimneys,fracture zones,and lateral transport layers such as large sand bodies and unconformity surfaces,forming a single or composite transport framework.A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers,that is,dual source hydrocarbon supply,gas chimney and submarine fan composite migration,deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing,late dynamic accumulation,and large-scale enrichment at ridges.The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers,as well as oil and gas exploration in related fields or regions. 展开更多
关键词 South China Sea Qiongdongnan Basin ultra-deep water ultra-shallow layer natural gas gas hydrate QUATERNARY gravity flow submarine fan accumulation model
在线阅读 下载PDF
Genetic types and accumulation models of natural gas in the Weixinan depression of the Beibu Gulf Basin in the western South China Sea
2
作者 Desheng Hu Gang Zhou +1 位作者 Xinde Xu Junjun You 《Natural Gas Industry B》 2024年第6期692-702,共11页
Exploration in the Weixinan depression of the Beibu Gulf Basin has long focused on crude oil,with less natural gas exploration,so the genetic types and accumulation characteristics of the natural gas in the depression... Exploration in the Weixinan depression of the Beibu Gulf Basin has long focused on crude oil,with less natural gas exploration,so the genetic types and accumulation characteristics of the natural gas in the depression have not been determined.Therefore,this study explored the geochemical characteristics,origins and sources,filling periods,and migration and accumulation models of natural gas in the Weixinan depression of the Beibu Gulf Basin,based on data on natural gas composition,light hydrocarbon composition,stable carbon isotopes,and fluid inclusions.The results showed that the natural gas in the Weixinan depression is mainly composed of hydrocarbon gases,with methane(CH_(4))predominating(62%-96%,with an average of 78%).The percentage of heavy hydrocarbon gases(C_(2-5))is high(average 20%),and the drying coefficient(C_(1)/C_(1-5))is generally less than 0.95,indicative of typical wet gas.The carbon isotope ratios of methane(δ^(13)C_(1))range from-51.60‰to-34.37‰,and the carbon isotope ratios of ethane(δ^(13)C_(2))range from-36.67‰to-16.53‰,respectively.The carbon isotopes of alkane gases generally show a positive sequence distribution,and a degree of carbon isotopic reversal in natural gas occurs in some well areas.It is speculated that the carbon isotope reversal may be related to the mixing of natural gas from multiple sets of source rocks in the same stage or from the same set of source rocks in different stages.The natural gas is mainly oil-type gas,probably originating from the oil shale in the lower sub-member of the second member of the Liushagang Formation(E_(2)l_(2)^(l)),with some contributions from the shale in the upper sub-member of the third member of the Liushagang Formation(E_(2)l_(3)^(u)).The study area has seen multiple periods of oil and gas filling.The area away from the subsags experienced a single,early period of natural gas filling associated with mature crude oil generated during the same period.However,in the zone near the sub-sags,there have been multiple relatively long periods of continuous natural gas filling.Two migration and accumulation models are developed:indirect natural gas filling with no contact between the source rocks and the reservoirs in the zone away from the sub-sags,and continuous natural gas filling with the source rocks in direct contact with the reservoirs in the zone near the sub-sags.The results revealed the genetic types and reservoir characteristics of the natural gas in the Weixinan depression,which is crucial for decision-making for the next step of natural gas exploration. 展开更多
关键词 Beibu Gulf basin Weixinan depression Oil-type gas Gasesource rock correlation accumulation model
暂未订购
Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation,Mahu sag,Junggar Basin 被引量:9
3
作者 ZHI Dongming TANG Yong +3 位作者 HE Wenjun GUO Xuguang ZHENG Menglin HUANG Liliang 《Petroleum Exploration and Development》 CSCD 2021年第1期43-59,共17页
By using the latest geological,seismic,drilling and logging data,this article studies the basic conditions for the formation of the total petroleum system and the orderly coexisting characteristics and accumulation mo... By using the latest geological,seismic,drilling and logging data,this article studies the basic conditions for the formation of the total petroleum system and the orderly coexisting characteristics and accumulation models of conventional&unconventional reservoirs in the Lower Permian Fengcheng Formation in the Junggar Basin.Controlled by thermal evolution,hydrocarbon generation and expulsion process of the high-quality source rocks in alkaline lake as well as the characteristics of multi-type reservoirs(conglomerate,sandstone,dolomite and shale),conventional structure-lithologic reservoirs and tight oil and shale oil reservoirs controlled by source-reservoir structure have been formed.On the plane,mature conventional reservoirs,medium-high mature tight oil,and medium-high mature shale oil reservoirs coexist orderly from the slope area around Mahu sag to the sag.Based on the orderly coexisting characteristics of conventional and unconventional reservoirs in the Fengcheng Formation,it is clear that oil and gas in the Fengcheng Formation accumulate continuously over a large area in three accumulation models:integrated source-reservoir,source-reservoir in close contact,and separated source-reservoir model.The three accumulation models differ in relationship between source-reservoir structure,reservoir lithology and spatial distribution,hydrocarbon migration,oil and gas type.It is pointed out that the conventional&unconventional oil and gas should be explored and developed as a whole to achieve an overall breakthrough of the total petroleum system.This study is expected to enrich the geological theory of oil and gas enrichment in continental basins and to provide an analogy for exploration and research in other hydrocarbon-rich sags. 展开更多
关键词 Junggar Basin Lower Permian Fengcheng Formation unconventional hydrocarbons orderly coexistence accumulation models shale oil total petroleum system
在线阅读 下载PDF
Distribution Characteristics and Accumulation Model for the Coal-formed Gas Generated from Permo-Carboniferous Coal Measures in Bohai Bay Basin, China: A Review 被引量:4
4
作者 JIANG Youlu HU Hongjin +1 位作者 Jon GLUYAS ZHAO Kai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1869-1884,共16页
Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r... Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern. 展开更多
关键词 distribution characteristics of natural gas accumulation model coal-formed gas Permo-Carboniferous coal measures Bohai Bay Basin
在线阅读 下载PDF
Hydrocarbon Distribution and Accumulation Model in the South of Lixian Slope,Raoyang Subbasin 被引量:2
5
作者 杨帆 邹才能 +2 位作者 侯连华 于兴河 李胜利 《Journal of Earth Science》 SCIE CAS CSCD 2013年第6期1033-1043,共11页
The exploration level in the south of Lixian slope is relatively low that causes the hydrocarbon distribution pattern and hydrocarbon accumulation model of discovered reservoirs un- clear. It was assumed that the hyd... The exploration level in the south of Lixian slope is relatively low that causes the hydrocarbon distribution pattern and hydrocarbon accumulation model of discovered reservoirs un- clear. It was assumed that the hydrocarbon accumulation model was mainly "stepped-like" type, but this model is contradicted with newly discovered reservoirs. Through comprehensive study of faults ac- tivity stages and depositional system, it can be concluded that the late period developed and late period attenuation faults act as the vertical migration path, while connected sandbodies provide lateral migra- tion path for oil and gas. Combining with the distribution of the known reservoirs and oil-source corre- lation, the hydrocarbon accumulation model in the south of Lixian slope is characterized by dual source rocks generating; connected sandbodies parallel transporting; shallow fault nose traps accumulating. This model reveals the direction and clue of the following exploration and development, which are based on shallow formation; finding subtle structure traps by fine seismic interpretation and accurate sedimentary microfacies characterization. 展开更多
关键词 south of Lixian slope hydrocarbon distribution hydrocarbon accumulation model pa-rallel migration.
原文传递
Major controlling factors and hydrocarbon accumulation models of large-scale lithologic reservoirs in shallow strata around the Bozhong sag,Bohai Bay Basin,China 被引量:2
6
作者 ZHOU Xinhuai WANG Deying +2 位作者 YU Haibo YANG Haifeng LI Long 《Petroleum Exploration and Development》 CSCD 2022年第4期758-769,共12页
Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling fact... Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag. 展开更多
关键词 shallow lithologic reservoir main controlling factors convergence ridge accumulation model Bozhong sag Bohai Bay Basin
在线阅读 下载PDF
Whole petroleum system and hydrocarbon accumulation model in shallow and medium strata in northern Songliao Basin,NE China 被引量:2
7
作者 ZHANG He WANG Xiaojun +6 位作者 JIA Chengzao LI Junhui MENG Qi’an JIANG Lin WANG Yongzhuo BAI Xuefeng ZHENG Qiang 《Petroleum Exploration and Development》 SCIE 2023年第4期784-797,共14页
Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas t... Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas types and distribution characteristics,reservoir-forming dynamics,source-reservoir relationship and hydrocarbon accumulation model of the whole petroleum system in shallow and medium strata in the northern part of Songliao Basin are systematically studied.The shallow-medium strata in northern Songliao Basin have the conditions for the formation of whole petroleum system,with sufficient oil and gas sources,diverse reservoir types and well-developed transport system,forming a whole petroleum system centered on the source rocks of the Cretaceous Qingshankou Formation.Different types of oil and gas resources in the whole petroleum system are correlated with each other in terms of depositional system,lithologic association and physical property changes,and they,to a certain extent,have created the spatial framework with orderly symbiosis of shallow-medium conventional oil reservoirs,tight oil reservoirs and shale oil reservoirs in northern Songliao Basin.Vertically,the resources are endowed as conventional oil above source,shale oil/tight oil within source,and tight oil below source.Horizontally,conventional oil,tight oil,interlayer-type shale oil,and pure shale-type shale oil are developed in an orderly way,from the margin of the basin to the center of the depression.Three hydrocarbon accumulation models are recognized for the whole petroleum system in northern Songliao Basin,namely,buoyancy-driven charging of conventional oil above source,retention of shale oil within source,and pressure differential-driven charging of tight oil below source. 展开更多
关键词 Songliao Basin super basin whole petroleum system conventional oil reservoir tight oil shale oil hydrocarbon accumulation model orderly distribution differential accumulation
在线阅读 下载PDF
A New Accumulation Model of Coal Seams in France Extensional Basins 被引量:1
8
作者 Wang Hua Wang Genfa Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China 《Journal of Earth Science》 SCIE CAS CSCD 2000年第3期103-107,共5页
This paper, based on the sedimentary features of the coal seams in the typical extensional (faulted) coal basins between two inland mountainous areas of the Central Massif (France) deals with the accumulation mechanis... This paper, based on the sedimentary features of the coal seams in the typical extensional (faulted) coal basins between two inland mountainous areas of the Central Massif (France) deals with the accumulation mechanism and the corresponding sedimentary tectonic conditions of these thick coalbeds, and proposes a new coal accumulation model for the inland lacustrine basin thick coalbeds. The presence of a great number of gravity flow sediments such as detrital flow, diluted slurry flow or turbidity current sediments in the coal seams, and that of the contemporaneous gravity slump and deformation structure in the coal seam itself both indicate that the lacustrine environment in the accumulation of the thick coalbeds was characterized by the relatively deep flood and violent sedimentation. This model can not only interpret reasonably the accumulation mechanism of the thick coalbeds developed in the fault basins in the Central Massif, France, but also show its features distinctively from those of the accumulation model of the traditional thick coalbeds. 展开更多
关键词 thick coalbeds accumulation model sedimentary architecture Central Massif France.
在线阅读 下载PDF
Structural characteristics and deep-water hydrocarbon accumulation model of the Scotian Basin, Eastern Canada 被引量:4
9
作者 Gaokui Wu Fanjun Kong +2 位作者 Naxin Tian Tianbi Ma Chongzhi Tao 《Energy Geoscience》 2023年第3期71-79,共9页
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s... Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin. 展开更多
关键词 Transform fault Salt tectonic Hydrocarbon accumulation model Deep-water turbidite sandstone Scotian basin
在线阅读 下载PDF
Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests 被引量:1
10
作者 TANG Lian-sheng ZHAO Zhan-lun +2 位作者 CHEN Hao-kun WU Yan-ping ZENG Yu-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期728-742,共15页
The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on... The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model. 展开更多
关键词 granite residual soil creep tests dynamic stress accumulation model
在线阅读 下载PDF
A comparative study on natural gas hydrate accumulation models at active and passive continental margins 被引量:1
11
作者 Hu Gaowei Bu Qingtao +6 位作者 Lyu Wanjun Wang Jiasheng Chen Jie Li Qing Gong Jianming Sun Jianye Wu Nengyou 《Natural Gas Industry B》 2021年第2期115-127,共13页
The comparative study on natural gas hydrate accumulation models between active and passive continental margins as well as their controlling factors is of great significance to the guidance of natural gas hydrate expl... The comparative study on natural gas hydrate accumulation models between active and passive continental margins as well as their controlling factors is of great significance to the guidance of natural gas hydrate exploration.Based on the data and research results of international typical active continental margin hydrate accumulation areas such as the Cascadia margin of the Northeast Pacific,the Nankai trough,etc.and passive continental margin areas like the Blake Ridge,the models of the gas hydrate accumulation system are summarized and numerically simulated,and a preliminary comparison of active and passive continental margin reservoir accumulation models was also carried out.The following results were obtained.(1)The active continental margin provides a driving force and channel for vertical gas migration,which induces deep free gas and in-situ biogas to migrate along the fault.The migration channels are mainly faults,fractures and slumps produced by subductioneaccretion.(2)Coarse-grained turbidity sediments such as silt and sandy silt have good porosity and permeability.Moreover,the sediment thickness on the accretionary wedge is large,which provides a good storage space for hydrate accumulation.(3)Numerical simulations of the Blake Ridge,and Niger Delta hydrate accumulation show that the passive continental margin lacks the lateral stress caused by the subduction zone compared with the active continental margin.However,due to the plastic materials in the thick sedimentary layer,high-pressure fluids and volcanic activities outside the continental margin,vertical accretion and tensile stress are generated and the accumulation rate of diffusion-type hydrates mainly depends on the methane supply rate.(4)Organic matter content,gas production rate,geothermal gradient and sedimentation rate at the passive continental margin have different effects on the spatial distribution of hydrate content.Mud volcanoes or diapir structures provide an ideal place for the formation and occurrence of hydrates. 展开更多
关键词 Active continental margin Passive continental margin Natural gas hydrate accumulation model Cascadia margin Nankai trough Blake ridge Niger Delta basin accumulation rate
在线阅读 下载PDF
Controlling Factors and Accumulation Model of Hydrocarbon Reservoirs in the Upper Cretaceous Yogou Formation, Koulele Area, Termit Basin, Niger
12
作者 Xuying Wang Lunkun Wan +6 位作者 Zaixing Jiang Ruohan Liu Xiabin Wang Wangxin Tang Yi Gao Shengqian Liu Wenmao Xu 《Journal of Earth Science》 SCIE CAS CSCD 2017年第6期1126-1134,共9页
Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the prim... Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks. 展开更多
关键词 hydrocarbon reservoirs controlling factors accumulation model Koulele area Yogou Formation
原文传递
Model of Tight Conglomerate Oil Accumulation in the Mahu Sag,Junggar Basin,Northwest China
13
作者 Weitao Wu Yong Tang +2 位作者 Jingzhou Zhao Tao Wu Heyuan Wu 《Journal of Earth Science》 2025年第3期1149-1167,共19页
Research based on oil accumulation models is essential for exploring the hydrocarbon accumulation theory further.Studies on tight oil accumulation models focused on fan delta depositional systems,and in particular,sys... Research based on oil accumulation models is essential for exploring the hydrocarbon accumulation theory further.Studies on tight oil accumulation models focused on fan delta depositional systems,and in particular,systems involving source-reservoir separated type are scarce.To explore the accumulation model of tight oil in conglomerate,this study focused on the Permian-Triassic tight conglomerate oil in Mahu sag,Junggar Basin,using well drilling,well logging,seismic profiling,oil testing,and laboratory data,and analyzed the formation conditions,formation types,and distribution patterns of conglomerate reservoirs.The results show that,the conglomerate reservoirs are predominantly lithologic reservoirs and partly fault-lithologic reservoirs;there is no water evident at the edge or bottom around the reservoirs.The tight conglomerate layer in the delta plain subfacies of each fan exhibits high clay content and intense diagenesis,and the argillaceous rocks in the pro-fan delta subfacies and shallow lacustrine facies form the sealing and floor conditions.The sandy conglomerate of fan delta front subfacies is the main reservoir body.Additionally,strikeslip faulting in the Indosinian-Himalayan period formed an efficient faulting system for trans-stratal migration with Hercynian-Indosinian inverse faulting.Oil migration is driven by the overpressure caused by hydrocarbon generation from alkali lacustrine source rocks.The distribution of reservoirs is primarily controlled by the large fan bodies,namely the Zhongguai,Baijiantan,Karamay,Huangyangquan,Xiazijie,Xiayan,and Dabasong fans.Each fan body forms a group of reservoirs or oilfields,resulting in a widely distributed pattern,according to which reservoir and sealing constitute one whole body—i.e.,patterns of“one sand and one reservoir,one fan and one field.”This results in a quasi-continuous accumulation model,which includes strong oil charging,efficient faulting transportation,trans-stratal migration,and lithologic trapped accumulation.The proposed model is an important supplement to the existing model of quasi-continuous oil and gas accumulation.Overall,this study enriches unconventional oil and gas accumulation theories. 展开更多
关键词 tight conglomerate oil fan delta facies quasi-continuous accumulation accumulation model Mahu sag Junggar Basin hydrocarbons petroleum geology
原文传递
Accumulation mechanism and enrichment model of deep tight sandstone gas in second member of Upper Triassic Xujiahe Formation,Xinchang structural belt,Sichuan Basin,SW China
14
作者 XIONG Liang CHEN Dongxia +3 位作者 YANG Yingtao ZHANG Ling LI Sha WANG Qiaochu 《Petroleum Exploration and Development》 2025年第4期907-920,共14页
Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was ... Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness. 展开更多
关键词 Upper Triassic second member of the Xujiahe Formation tight sandstone gas reservoir enrichment mechanism hydrocarbon accumulation model Xinchang structural belt Sichuan Basin
在线阅读 下载PDF
Reservoir Forming Conditions and Models of Oil Sands in Northwestern Margin of Junggar Basin,China
15
作者 Xiaoping Ma Xinguo Zhuang +6 位作者 Yunlong He Jibin Zhou Meng Wang Baoqing Li Zhenlong Dai Xudong Fan Haihuai Sun 《Journal of Earth Science》 2025年第2期611-626,共16页
The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it i... The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it is of great scientific significance to study the accumulation conditions of oil sand in different strata and mining areas of the Junggar Basin.Through a large number of field investigations,drilling verification and sampling tests,it is found that the oil sand in the region covers an area of 2000 km^(2),with shallow and thick reservoir,and predicted resource of 180 million tons.The oil sand resources are mainly distributed in four geological strata,namely the Middle Triassic Karamay Formation,Early Jurassic Badaowan Formation,Late Jurassic Qigu Formation,and Early Cretaceous Qingshuihe Formation.The reservoir is mainly composed of sandstone with high porosity and permeability,and the reservoir space is mainly intergranular pores with a medium average oil content.The oil sand deposit in the region is a typical destructive oil reservoir.The crude oil in the oil sand layer is degraded and thickened from the deep to the shallow,the content of saturated hydrocarbon decreased,and the content of aromatic hydrocarbon,non-hydrocarbon and asphaltene increased.The oil source comes from the deep Permian hydrocarbon-generating depression.Unconformities,faults and marginal fan delta-braided river depositional systems constitute effective migration and storage systems.Caprocks of the Upper Triassic Baijiantan Formation,Lower Jurassic Sangonghe Formation and Lower Cretaceous Hutubihe Formation were formed by three large scale lake transgressions.The Indosinian,Yanshan and Late Yanshan movements are the main driving forces for the migration of deep oil and gas to the shallow edge to form oil sand deposits.It is considered that the oil sand in the northwestern margin of Junggar Basin is of a slope complex migration type. 展开更多
关键词 oil sand reservoir forming conditions accumulation model Junggar Basin petroleum geology
原文传递
An improved model of partition curve based on accumulation normal distribution function 被引量:2
16
作者 Sun Wei Chen Jianzhong +1 位作者 Shen Lijuan Li Yonggai 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期375-380,共6页
Extensive studies based on partition curve of gravity separation have been investigated. All created models are merely used to simulate density distribution at the same size fraction. However, they cannot be used to p... Extensive studies based on partition curve of gravity separation have been investigated. All created models are merely used to simulate density distribution at the same size fraction. However, they cannot be used to predictive distribution of materials depending on compound feature of density and size. According to this situation, an improved model of partition curve based on accumulation normal distribution, which was distinguished from conventional model of accumulation normal distribution for partition curve, was proposed in this paper. It could simulate density distribution at different size fractions by using the density-size compound index and conflating the partition curves at different size fractions as one partition curve. The feasibility of three compound indexes, including mass index, settlement index and transformation index, were investigated. Specific forms of the improved model were also proposed. It is found that transformation index leads to the best fitting results, while the fitting error is only 1.75 according to the fitting partition curve. 展开更多
关键词 Coal preparation Mathematical model Partition curve accumulation normal distribution model
在线阅读 下载PDF
Structural characteristics of faults in Wangfu fault depression and their control on coal-rock gas enrichment,Songliao Basin,NE China
17
作者 SUN Yonghe LIU Yumin TIAN Wenguang 《Petroleum Exploration and Development》 2025年第3期649-662,共14页
Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods... Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods of the coal-bearing formations were determined,and the fault systems were divided.Combined with the coal seam thickness and actual gas indication in logging,the controls of fault systems in the rift basin on the spatial distribution of coal and the occurrence of coal-rock gas were identified.The results show that the Wangfu fault depression is an asymmetrical graben formed under the control of basement reactivated strike-slip T-rupture,and contains coal-bearing formations and five sub-types of fault systems under three types.The horizontal extension strength,vertical activity strength and tectono-sedimentary filling difference of basement faults control vertical stratigraphic sequences,accumulation intensity,and accumulation frequency of coal seam in rift basin.The structural transfer zone formed during the segmented reactivation and growth of the basement faults controls the injection location of steep slope exogenous clasts.The filling effect induced by igneous intrusion accelerates the sediment filling process in the rift lacustrine area.The structural transfer zone and igneous intrusion together determine the preferential accumulation location of coal seams in the plane.The faults reactivated at the basement and newly formed during the rifting phase serve as pathways connecting to the gas source,affecting the enrichment degree of coal-rock gas.The vertical sealing of the faults was evaluated by using shale smear factor(SSF),and the evaluation criterion was established.It is indicated that the SSF is below 1.1 in major coal areas,indicating favorable preservation conditions for coal-rock gas.Based on the influence factors such as fault activity,segmentation and sealing,the coal-rock gas accumulation model of rift basin was established. 展开更多
关键词 coal-rock gas rift basin Songliao Basin Wangfu fault depression structural characteristics fault system basement fault reactivation CRETACEOUS coal accumulation law accumulation model
在线阅读 下载PDF
New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression,Tarim Basin,NW China
18
作者 WANG Qinghua YANG Haijun YANG Wei 《Petroleum Exploration and Development》 2025年第1期79-94,共16页
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es... Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment. 展开更多
关键词 Tarim Basin Kuqa Depression ultra-deep layers clastic rock multi-layer structural deformation multilayered migration and accumulation new three-dimensional accumulation model
在线阅读 下载PDF
Main factors controlling unconventional gas enrichment and high production in the first member of Permian Maokou Formation,southeastern Sichuan Basin,SW China
19
作者 HE Guisong SUN Bin +4 位作者 GAO Yuqiao ZHANG Peixian ZHANG Zhiping CAI Xiao XIA Wei 《Petroleum Exploration and Development》 2025年第2期408-421,共14页
Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore... Based on the data of drilling,logging,experiment and gas testing in the Nanchuan area,southeastern Sichuan Basin,the hydrocarbon generation potential,gas genesis,occurrence state,migration,preservation conditions,pore and fracture features and accumulation evolution of the first member of Permian Maokou Formation(Mao 1 Member)are systematically studied,and the main controlling factors of unconventional gas enrichment and high production in marlstone assemblage of Mao 1 Member are discussed.(1)The enrichment and high yield of unconventional natural gas in the Mao 1 Member are controlled by three factors:carbon-rich fabric controlling hydrocarbon generation potential,good preservation controlling enrichment,and natural fracture controlling production.(2)The carbonate rocks of Mao 1 Member with carbon rich fabric have significant gas potential,exhibiting characteristics of self-generation and self-storage,which lays the material foundation for natural gas accumulation.(3)The occurrence state of natural gas is mainly free gas,which is prone to lateral migration,and good storage conditions are the key to natural gas enrichment.Positive structure is more conducive to natural gas accumulation,and a good compartment is created jointly by the self-sealing property of the Mao 1 Member and its top and bottom sealing property in monoclinal area,which is favorable for gas accumulation by retention.(4)Natural fractures are the main reservoir space and flow channel,and the more developed natural fractures are,the more conducive to the formation of high-quality porous-fractured reservoirs and the accumulation of natural gas,which is the core of controlling production.(5)The accumulation model of unconventional natural gas is proposed as“self-generation and self-storage,preservation controlling richness,and fractures controlling production”.(6)Identifying fracture development areas with good preservation conditions is the key to successful exploration,and implementing horizontal well staged acidizing and fracturing is an important means to increase production and efficiency.The study results are of referential significance for further understanding the natural gas enrichment in the Mao 1 Member and guiding the efficient exploration and development of new types of unconventional natural gas. 展开更多
关键词 Sichuan Basin PERMIAN Maokou Formation unconventional natural gas main controlling factors of enrichment and high production accumulation model carbonate rock southeastern Sichuan Basin
在线阅读 下载PDF
Control of neotectonic movement on hydrocarbon accumulation in the Kuqa Foreland Basin,west China 被引量:8
20
作者 Jiang Zhenxue Li Lianxia +4 位作者 Song Yan Tian Fenghua Zhao Mengjun Wang Haijiang Zhao Zhenxing 《Petroleum Science》 SCIE CAS CSCD 2010年第1期49-58,共10页
Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon a... Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin. 展开更多
关键词 Kuqa Foreland Basin neotectonic movement accumulation element accumulation process accumulation model
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部