The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient ...The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials.Herein,we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance.The three polymers are designed based on double B←N bridged bipyridine(BNBP)unit with monomeric thieno[3,4-c]pyrrole-4,6-dione(TPD),TPD dimer and TPD trimer as the copolymerizing units,respectively.The three polymers show similar low LUMO energy levels but different backbone configuration.Compared with the wavy backbone configuration,the pseudo-straight backbone configuration imparts the polymer with much enhanced crystallinity and electron mobility.As a result,after n-doping,the polymer with pseudo-straight configuration shows much higher electronic conductivity and power factor.We think these findings could serve as important guidelines for molecular design toward efficient n-type polymer thermoelectric materials.展开更多
Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and...Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A' polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V 1 s-i was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A') structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.展开更多
Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor pol...Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor polymers, poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[ 1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'-di(2- dodecyltetradecyl)-2,2';5',2";5",2'-quaterthiophen-5,5'"-diyl)] (PffBT4T-2DT), with suitably complementary absorption spectra and energy levels were applied and examined. Among all different donor-acceptor pairs studied here, the combination of PTB7-Th:poly[NN-bis(1-hexylheptyl)-3,4,9,10-pery,enediimide-1,6/1,7-diyl-alt-2,5-thiophene] (PDI-Th) exhibited the best power conversion efficiency (PCE) of 5.13%, with open-circuit voltage (Vo:) = 0.79 lV, short-circuit current density (Jsc) = 12.35 mA.cm-2 and fill-factor (FF) = 0.52. The polymer of PDI-Th acceptor used here had a regio-irregular backbone, conveniently prepared from a mixture of 1,6- and 1,7-dibromo-PDI. It is also noteworthy that neither additive nor post- treatment is required for obtaining such a cell performance.展开更多
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize t...Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize the photoelectric properties is reported.A new narrow bandgap(1.30 eV)chlorinated non-fullerene electron acceptor(Y15),based on benzo[d][1,2,3] triazole with two 3-undecylthieno[2’,3’:4,5] thieno[3,2-b] pyrrole fused-7-heterocyclic ring,with absorption edge extending to the near-infrared(NIR) region,namely A-DA’D-A type structure,is designed and synthesized.Its electrochemical and optoelectronic properties are systematically investigated.Benefitting from its NIR light harvesting,the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency(PCE) of 14.13%,when blending with a wide bandgap polymer donor PM6.Our results show that the A-DA’D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells(PSCs).展开更多
Non-fullerene organic solar cells have received increasing attentions in these years,and great progresses have been made since 2013.Among them,aromatic di-amide/imide-containing frameworks have shown promising applica...Non-fullerene organic solar cells have received increasing attentions in these years,and great progresses have been made since 2013.Among them,aromatic di-amide/imide-containing frameworks have shown promising applications.The outstanding properties of them are highly associated with their unique electronic and structural features,such as strong electron-withdrawing nature,broad absorption in UVvisible region,tunable HOMO/LUMO energy levels,easy modifications,and excellent chemical,thermal and photochemical stabilities.In this review,we give an overview of recent developments of aromatic diamide/imide-containing small molecules used as electron acceptors for organic solar cells.展开更多
基金the National Natural Science Foundation of China(Nos.22075271,21625403,21875244 and 21875241)B.M.thanks the financial supports by State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences and the Jilin Scientific and Technological Development Program(No.20220508142RC).
文摘The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials.Herein,we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance.The three polymers are designed based on double B←N bridged bipyridine(BNBP)unit with monomeric thieno[3,4-c]pyrrole-4,6-dione(TPD),TPD dimer and TPD trimer as the copolymerizing units,respectively.The three polymers show similar low LUMO energy levels but different backbone configuration.Compared with the wavy backbone configuration,the pseudo-straight backbone configuration imparts the polymer with much enhanced crystallinity and electron mobility.As a result,after n-doping,the polymer with pseudo-straight configuration shows much higher electronic conductivity and power factor.We think these findings could serve as important guidelines for molecular design toward efficient n-type polymer thermoelectric materials.
基金supported by the National Natural Science Foundation of China (51173055, 21504026, 51572094)the National Basic Research Program of China (2013CBA01600)the China Postdoctoral Science Foundation (2013M542009)
文摘Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A' polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V 1 s-i was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A') structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.
基金financially supported by the National Natural Science Foundation of China(Nos.21674001 and 51473003)
文摘Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor polymers, poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[ 1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'-di(2- dodecyltetradecyl)-2,2';5',2";5",2'-quaterthiophen-5,5'"-diyl)] (PffBT4T-2DT), with suitably complementary absorption spectra and energy levels were applied and examined. Among all different donor-acceptor pairs studied here, the combination of PTB7-Th:poly[NN-bis(1-hexylheptyl)-3,4,9,10-pery,enediimide-1,6/1,7-diyl-alt-2,5-thiophene] (PDI-Th) exhibited the best power conversion efficiency (PCE) of 5.13%, with open-circuit voltage (Vo:) = 0.79 lV, short-circuit current density (Jsc) = 12.35 mA.cm-2 and fill-factor (FF) = 0.52. The polymer of PDI-Th acceptor used here had a regio-irregular backbone, conveniently prepared from a mixture of 1,6- and 1,7-dibromo-PDI. It is also noteworthy that neither additive nor post- treatment is required for obtaining such a cell performance.
基金supported by the National Natural Science Foundation of China(21734001,51761165023,21504066,21534003)the Department of the Navy U.S.(N00014-14-1-0580,N00014-16-1-2520)+1 种基金the Ministry of Science and Technology,China(2016YFA0200700)the Natural Science Foundation,U.S.(DMR-1507249,CBET-1639429)~~
基金financially supported by the National Natural Science Foundation of China (Nos.51811530096, 21875286)the National Key Research & Development Projects of China (No.2017YFA0206600)Science Fund for Distinguished Young Scholars of Hunan Province (No.2017JJ1029)
文摘Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize the photoelectric properties is reported.A new narrow bandgap(1.30 eV)chlorinated non-fullerene electron acceptor(Y15),based on benzo[d][1,2,3] triazole with two 3-undecylthieno[2’,3’:4,5] thieno[3,2-b] pyrrole fused-7-heterocyclic ring,with absorption edge extending to the near-infrared(NIR) region,namely A-DA’D-A type structure,is designed and synthesized.Its electrochemical and optoelectronic properties are systematically investigated.Benefitting from its NIR light harvesting,the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency(PCE) of 14.13%,when blending with a wide bandgap polymer donor PM6.Our results show that the A-DA’D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells(PSCs).
基金financially supported by NSFC(Nos.21190032,21372226)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09020000)
文摘Non-fullerene organic solar cells have received increasing attentions in these years,and great progresses have been made since 2013.Among them,aromatic di-amide/imide-containing frameworks have shown promising applications.The outstanding properties of them are highly associated with their unique electronic and structural features,such as strong electron-withdrawing nature,broad absorption in UVvisible region,tunable HOMO/LUMO energy levels,easy modifications,and excellent chemical,thermal and photochemical stabilities.In this review,we give an overview of recent developments of aromatic diamide/imide-containing small molecules used as electron acceptors for organic solar cells.