The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of compu...The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of computer simulation of casting solidification. Based on the casting process of the Cu-Ni alloy, the simulation software of diathermanous—flowing—stress coupling ProCAST was used to simulate the Cu-Ni alloy solidification process about the defects and temperature field. By combining experimental results with the simulation results, the quality of casting on some cooling conditions were analyzed. Furthermore, a better cooling condition for solidification process of the Cu-Ni alloy was chosen to improve the quality of the casting. The simulation results indicate that the quality of Cu-Ni alloy casting is the best when it is on the cooling condition of the permanent mold with the insulated riser system.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
The mathematical model for the thermal process of billets rolling has beenestablished, including transporting in air and temperature-holding cover, descaling withhigh-pressure water, and the process of rolling and coo...The mathematical model for the thermal process of billets rolling has beenestablished, including transporting in air and temperature-holding cover, descaling withhigh-pressure water, and the process of rolling and cooling in water box. The calculated data by themodel have been compared with the measured data and the results show that the model is right andcreditable. Based on the model, the main thermal characters of rolling line have been simulated andthe influence of all the parameters on the temperature of rolling has been analyzed.展开更多
A new type of cooling stave with internal ribbed tube was proposed,and the heat transfer performance of the stave was studied by means of thermal test and numerical simulation.The temperature of cooling stave was moni...A new type of cooling stave with internal ribbed tube was proposed,and the heat transfer performance of the stave was studied by means of thermal test and numerical simulation.The temperature of cooling stave was monitored in the conditions of furnace gas temperature of 200-700 C and cooling water velocity of 0.2-1.0 m/s.The thermal test results show that the internal rib structure can form swirl in the water pipe and improve the cooling capacity of the cooling stave.The higher the furnace temperature or the lower the cooling water flow rate,the more obvious the advantage of the cooling stave with internal ribbed tube.The mathematical model of the cooling stave with internal ribbed tube was established by FLUENT software,and the influence of the internal rib structure parameters on the heat transfer performance of the cooling stave was discussed.It is suggested that the parameters of the internal ribbed tube should be 4 ribs,1 mm in height,5-7 mm in width,and 20-30 mm in lead.In the same common working conditions of the cooling stave,the maximum temperature of the newly designed cooling stave with internal ribbed tube is reduced by 5.6%compared with that of common cooling stave with round tube.The water flow rate in the internal ribbed tube only needs 0.9 m/s to reach the cooling effect of 2 m/s in the common tube cooling stave,which can save 55%of water.In case of water shortage accident of cooling stave,the maximum temperature of the cooling stave with internal ribbed tube is decreased by 22.4%compared with that of common round tube,which can effectively reduce the harm of water shortage and protect the cooling stave.展开更多
In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found tha...In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.展开更多
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vor...Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.展开更多
In the study of beam dynamics of high intensity linear accelerators,full 3D multiparticle simulations are needed due to numerous nonlinear effects caused by the strong space-charge effects between charged particles.Ho...In the study of beam dynamics of high intensity linear accelerators,full 3D multiparticle simulations are needed due to numerous nonlinear effects caused by the strong space-charge effects between charged particles.However,the use of multiparticle simulations is limited by the speed of the Particle-in-cell(PIC)algorithm.In this work,we modify the PIC algorithm by using the symmetry of beam,the solution procedure is divided into two steps,one is the solution of the symmetric field and the other is the addition of the asymmetric field components.Due to the full use of symmetry,our modified algorithm can significantly improve the computational speed of multiparticle simulations.Results show that the modified algorithm accelerates the process of solving space-charge field by a factor of 4,thus increases the speed of the entire multiparticle simulation by a factor of 1.7,while ensures the accuracy of the simulation.Although our algorithm is modified for linear accelerator,considering that the algorithm is an improvement based on symmetry,it can still speed up the simulation for any accelerator with symmetry.展开更多
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr...In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.展开更多
According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The ma...According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.展开更多
Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been...Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location.展开更多
Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions...Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions of the three-dimensional velocities were compared with the measured results by Laser-Doppler Velocimetry (LDV). Results reveal the secondary flow near the blade surface in the wake region behind the jet hole. Compared with the stationary cascade, there are the centrifugal force and Coriolis force existing in the flow field of the turbine rotor, and these forces make the three-dimensional flow field change in the turbine rotor, especially for the radial velocity. The effect of rotation on the flow field and the film cooling effectiveness on the pressure side is more apparent than that on the suction side as is shown in the computational and measured results, and the low film cooling effectiveness appears on the pressure surface of the turbine rotor blade compared with that of the stationary cascade.展开更多
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli...This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”展开更多
Shrinkage porosity defect is often found in an air cooled jumbo steel ingot, which will influence the quality of the final rolled plates. In practical production, some rolled plates are frequently rejected due to the ...Shrinkage porosity defect is often found in an air cooled jumbo steel ingot, which will influence the quality of the final rolled plates. In practical production, some rolled plates are frequently rejected due to the serious shrinkage porosity of the ingot. To improve the quality of the ingot, a new cooling method, gradient cooling process (in which the upper part of the ingot is air cooled and the lower part is spray cooled) was put forward in this study. The solidification behaviors for a 60 t jumbo slab ingot under gradient cooling condition were simulated using the ProCast software, and the results were compared with those of an ingot by air cooling condition. The solidifying tendency, temperature field and distribution of shrinkage porosities in the ingot under different cooling conditions were analyzed. Simulation results show that under gradient cooling condition the solidification of the slab ingot progresses in an upward manner along the vertical z axis and in a centripetal manner along the horizontal x and y axes. Gradient cooling can efficiently reduce shrinkage porosity of the jumbo slab ingot by optimizing the solidification sequence, and making the position of shrinkage porosity move from near the middle height of the ingot (under air cooling condition) towards the head of the ingot; and the secondary shrinkage is eliminated. In addition, the solidification time of the ingot under gradient cooling is 7.3 h in this simulation, which is 2.7 h faster than that under air cooling. A 60 t jumbo slab ingot was successfully produced under gradient cooling condition. The ingot was rolled to a plate with a thickness of 100 mm and length of 18,000 mm, and ultrasonic flaw detection was performed. Some porosity was found along the axis of the plate at 4,900 position of the defect is moved towards the head with the simulated result. - 6,000 mm from the head of the plate, indicating that the of the ingot. This distribution trend of the defect is consistent展开更多
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ...The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.展开更多
Background Superconducting cavity is usually needed to be gradually cooled from room temperature to the superconducting temperature zone(4.2 K and below)in the testing and sophisticated operation process of supercondu...Background Superconducting cavity is usually needed to be gradually cooled from room temperature to the superconducting temperature zone(4.2 K and below)in the testing and sophisticated operation process of superconducting cavity.Purpose The purpose of this paper is to study the cooling law on the helium cooldown process for the 650 MHz two-cell superconducting cavity with the unsteady numerical simulation.Method A three-dimensional coupled heat-flow model of 650 MHz two-cell superconducting cavity was established.The unsteady numerical simulation of different inlet temperatures,flow rates and pressure conditions was carried out.The equiva-lent convective heat transfer coefficient and temperature distribution of 650 MHz two-cell superconducting cavity during cooldown process were obtained.The effects of cooling time and entrance parameters on the cooldown process were analyzed.Results The temperature distribution of the lower intersection lines has a large drop in the initial stage of cooldown process(120 s),while the temperature near the flanges at the both ends is still higher(remaining at the initial temperature of 300 K).With the passage of time,the temperature of the upper and lower intersection lines decreases.The maximum temperature difference on the lower intersections is within 2 K in the final stage of cooldown process(3600 s).The maximum temperature difference increases by 180%,and the difference between the maximum temperature and the minimum temperature(dT)at the end of a cooldown stage increases by 130%after 1 h,respectively,when the inlet temperature drops from 290 to 270 K(under the condition of the initial temperature of 300 K).Conclusions The maximum temperature difference and the dT at the end of a cooldown stage increase with the decrease in the inlet temperature.The maximum temperature difference increases with the increase in the inlet flow rate,while the dT at the end of a cooldown stage decreases with the increase in the inlet flow rate.The effect of changing the inlet flow rate on the cooling rate is not as obvious as changing the inlet temperature.Once there is a certain flow rate,the advantage of further increasing the flow rate to reduce the temperature of the superconducting cavity is not so great.展开更多
In this paper the computer code of AUTOUGH2 is used to carry out numerical simulation study on the Wuqing geothermal reservoir for evaluating reservoir performance upon different exploitation schemes.The simulating ca...In this paper the computer code of AUTOUGH2 is used to carry out numerical simulation study on the Wuqing geothermal reservoir for evaluating reservoir performance upon different exploitation schemes.The simulating calculation and analysis of two main cases,production without reinjection and production with reinjection,were carried out to illuminate and compare the temperature and pressure profiles with distance and time.The water level or pressure will decrease with the time of production,and the reinjection will cause the cooling effect of reinjection on the production zone.展开更多
Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perf...Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perforated plates respectively in a staggered manner. Every effusion hole has an inclined angle of 30° with respect to the surface. The two parallel plates are spaced three times the diameter of the effusion hole. The ratio of center-to-center spacing of adjacent holes to the diameter of the effusion hole is set to be 3.0, 4.0 and 5.0 respectively. The flow field, temperature field and wall film cooling effectiveness are calculated for different blowing ratios ranging from 0.5 to 1.5. In general, the wall cooling effectiveness increases as the center-to-center spacing of adjacent holes decreases or the blowing ratio increases.展开更多
Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperatu...Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.展开更多
Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected ...Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable.展开更多
During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is h...During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is highly likely to be accelerated by strong whistler-mode waves occurring near very low L-shell regions where the plasmapause was suppressed.It is very interesting to observe the intense chorus-accelerated electrons locating in such low L-shells and filling into the slot region.In this paper,we further perform numerical simulation by solving the two-dimensional Fokker-Planck equation based on the bounce-averaged diffusion rates.Numerical results demonstrate the evolution processes of the chorus-driven electron flux and confirm the flux enhancement in low pitch angle ranges(20◦-50◦)after the wave-particle interaction for tens of hours.The simulation result is consistent with the observation of potential butterfly pitch angle distributions of relativistic electrons from both ZH-1 and Van Allen probes.展开更多
文摘The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of computer simulation of casting solidification. Based on the casting process of the Cu-Ni alloy, the simulation software of diathermanous—flowing—stress coupling ProCAST was used to simulate the Cu-Ni alloy solidification process about the defects and temperature field. By combining experimental results with the simulation results, the quality of casting on some cooling conditions were analyzed. Furthermore, a better cooling condition for solidification process of the Cu-Ni alloy was chosen to improve the quality of the casting. The simulation results indicate that the quality of Cu-Ni alloy casting is the best when it is on the cooling condition of the permanent mold with the insulated riser system.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
文摘The mathematical model for the thermal process of billets rolling has beenestablished, including transporting in air and temperature-holding cover, descaling withhigh-pressure water, and the process of rolling and cooling in water box. The calculated data by themodel have been compared with the measured data and the results show that the model is right andcreditable. Based on the model, the main thermal characters of rolling line have been simulated andthe influence of all the parameters on the temperature of rolling has been analyzed.
基金funded by the National Natural Science Foundation of China(51574179)Nantong Science and Technology Project(JC2019154).
文摘A new type of cooling stave with internal ribbed tube was proposed,and the heat transfer performance of the stave was studied by means of thermal test and numerical simulation.The temperature of cooling stave was monitored in the conditions of furnace gas temperature of 200-700 C and cooling water velocity of 0.2-1.0 m/s.The thermal test results show that the internal rib structure can form swirl in the water pipe and improve the cooling capacity of the cooling stave.The higher the furnace temperature or the lower the cooling water flow rate,the more obvious the advantage of the cooling stave with internal ribbed tube.The mathematical model of the cooling stave with internal ribbed tube was established by FLUENT software,and the influence of the internal rib structure parameters on the heat transfer performance of the cooling stave was discussed.It is suggested that the parameters of the internal ribbed tube should be 4 ribs,1 mm in height,5-7 mm in width,and 20-30 mm in lead.In the same common working conditions of the cooling stave,the maximum temperature of the newly designed cooling stave with internal ribbed tube is reduced by 5.6%compared with that of common cooling stave with round tube.The water flow rate in the internal ribbed tube only needs 0.9 m/s to reach the cooling effect of 2 m/s in the common tube cooling stave,which can save 55%of water.In case of water shortage accident of cooling stave,the maximum temperature of the cooling stave with internal ribbed tube is decreased by 22.4%compared with that of common round tube,which can effectively reduce the harm of water shortage and protect the cooling stave.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In the present study,a facility,i.e.,a mechanical deflection system (MDS),was established and applied to assess the long-term reliability of the solder joints in plastic ball grid array (BGA) assembly.It was found that the MDS not only quickly assesses the long-term reliability of solder joints within days,but can also mimic similar failure mechanisms in accelerated thermal cycling (ATC) tests. Based on the MDS and ATC reliability experiments,the acceleration factors (AF) were obtained for different reliability testing conditions.Furthermore,by using the creep constitutive relation and fatigue life model developed in part I,a numerical approach was established for the purpose of virtual life prediction of solder joints. The simulation results were found to be in good agreement with the test results from the MDS.As a result,a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of plastic BGA assembly.
基金financially supported by the National Natural Science Foundation of China(Grant No.51509045)
文摘Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
文摘In the study of beam dynamics of high intensity linear accelerators,full 3D multiparticle simulations are needed due to numerous nonlinear effects caused by the strong space-charge effects between charged particles.However,the use of multiparticle simulations is limited by the speed of the Particle-in-cell(PIC)algorithm.In this work,we modify the PIC algorithm by using the symmetry of beam,the solution procedure is divided into two steps,one is the solution of the symmetric field and the other is the addition of the asymmetric field components.Due to the full use of symmetry,our modified algorithm can significantly improve the computational speed of multiparticle simulations.Results show that the modified algorithm accelerates the process of solving space-charge field by a factor of 4,thus increases the speed of the entire multiparticle simulation by a factor of 1.7,while ensures the accuracy of the simulation.Although our algorithm is modified for linear accelerator,considering that the algorithm is an improvement based on symmetry,it can still speed up the simulation for any accelerator with symmetry.
基金Supported by the Ministerial Level Advanced Research Foundation(40402070101)
文摘In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061510)National High Technology Research and Development Project of China(2001AA337040)
文摘According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.
文摘Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location.
基金the National Natural Science Foundation of China (Grant No. 50406017).
文摘Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the k- ε turbulence model, and the predictions of the three-dimensional velocities were compared with the measured results by Laser-Doppler Velocimetry (LDV). Results reveal the secondary flow near the blade surface in the wake region behind the jet hole. Compared with the stationary cascade, there are the centrifugal force and Coriolis force existing in the flow field of the turbine rotor, and these forces make the three-dimensional flow field change in the turbine rotor, especially for the radial velocity. The effect of rotation on the flow field and the film cooling effectiveness on the pressure side is more apparent than that on the suction side as is shown in the computational and measured results, and the low film cooling effectiveness appears on the pressure surface of the turbine rotor blade compared with that of the stationary cascade.
文摘This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”
基金supported by the Science and Technology Projects of Ministry of Education of P. R. China (The study on heat conducting and initial solidification shell of jumbo slab ingot under gradient cooling, Grant No. 20112120120003)
文摘Shrinkage porosity defect is often found in an air cooled jumbo steel ingot, which will influence the quality of the final rolled plates. In practical production, some rolled plates are frequently rejected due to the serious shrinkage porosity of the ingot. To improve the quality of the ingot, a new cooling method, gradient cooling process (in which the upper part of the ingot is air cooled and the lower part is spray cooled) was put forward in this study. The solidification behaviors for a 60 t jumbo slab ingot under gradient cooling condition were simulated using the ProCast software, and the results were compared with those of an ingot by air cooling condition. The solidifying tendency, temperature field and distribution of shrinkage porosities in the ingot under different cooling conditions were analyzed. Simulation results show that under gradient cooling condition the solidification of the slab ingot progresses in an upward manner along the vertical z axis and in a centripetal manner along the horizontal x and y axes. Gradient cooling can efficiently reduce shrinkage porosity of the jumbo slab ingot by optimizing the solidification sequence, and making the position of shrinkage porosity move from near the middle height of the ingot (under air cooling condition) towards the head of the ingot; and the secondary shrinkage is eliminated. In addition, the solidification time of the ingot under gradient cooling is 7.3 h in this simulation, which is 2.7 h faster than that under air cooling. A 60 t jumbo slab ingot was successfully produced under gradient cooling condition. The ingot was rolled to a plate with a thickness of 100 mm and length of 18,000 mm, and ultrasonic flaw detection was performed. Some porosity was found along the axis of the plate at 4,900 position of the defect is moved towards the head with the simulated result. - 6,000 mm from the head of the plate, indicating that the of the ingot. This distribution trend of the defect is consistent
基金Supported by NationalNatural Science FoundationCouncil of the People’s Republic of China (20490224)
文摘The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.
文摘Background Superconducting cavity is usually needed to be gradually cooled from room temperature to the superconducting temperature zone(4.2 K and below)in the testing and sophisticated operation process of superconducting cavity.Purpose The purpose of this paper is to study the cooling law on the helium cooldown process for the 650 MHz two-cell superconducting cavity with the unsteady numerical simulation.Method A three-dimensional coupled heat-flow model of 650 MHz two-cell superconducting cavity was established.The unsteady numerical simulation of different inlet temperatures,flow rates and pressure conditions was carried out.The equiva-lent convective heat transfer coefficient and temperature distribution of 650 MHz two-cell superconducting cavity during cooldown process were obtained.The effects of cooling time and entrance parameters on the cooldown process were analyzed.Results The temperature distribution of the lower intersection lines has a large drop in the initial stage of cooldown process(120 s),while the temperature near the flanges at the both ends is still higher(remaining at the initial temperature of 300 K).With the passage of time,the temperature of the upper and lower intersection lines decreases.The maximum temperature difference on the lower intersections is within 2 K in the final stage of cooldown process(3600 s).The maximum temperature difference increases by 180%,and the difference between the maximum temperature and the minimum temperature(dT)at the end of a cooldown stage increases by 130%after 1 h,respectively,when the inlet temperature drops from 290 to 270 K(under the condition of the initial temperature of 300 K).Conclusions The maximum temperature difference and the dT at the end of a cooldown stage increase with the decrease in the inlet temperature.The maximum temperature difference increases with the increase in the inlet flow rate,while the dT at the end of a cooldown stage decreases with the increase in the inlet flow rate.The effect of changing the inlet flow rate on the cooling rate is not as obvious as changing the inlet temperature.Once there is a certain flow rate,the advantage of further increasing the flow rate to reduce the temperature of the superconducting cavity is not so great.
文摘In this paper the computer code of AUTOUGH2 is used to carry out numerical simulation study on the Wuqing geothermal reservoir for evaluating reservoir performance upon different exploitation schemes.The simulating calculation and analysis of two main cases,production without reinjection and production with reinjection,were carried out to illuminate and compare the temperature and pressure profiles with distance and time.The water level or pressure will decrease with the time of production,and the reinjection will cause the cooling effect of reinjection on the production zone.
基金National Natural Science Foundation of China (50876041)Aeronautical Science Foundation of China (2008ZB2014)
文摘Three-dimensional numerical simulation is carried out to investigate the flow and heat transfer characteristics of impingement/effusion cooling systems. The impingement/effusion holes are arranged on two parallel perforated plates respectively in a staggered manner. Every effusion hole has an inclined angle of 30° with respect to the surface. The two parallel plates are spaced three times the diameter of the effusion hole. The ratio of center-to-center spacing of adjacent holes to the diameter of the effusion hole is set to be 3.0, 4.0 and 5.0 respectively. The flow field, temperature field and wall film cooling effectiveness are calculated for different blowing ratios ranging from 0.5 to 1.5. In general, the wall cooling effectiveness increases as the center-to-center spacing of adjacent holes decreases or the blowing ratio increases.
基金supported by the National Natural Science Foundation of China(Grant No.51109071)
文摘Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.
文摘Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable.
基金supported by the National Natural Science Foundation of China(Grant Nos.41904149 and 12173038)Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(Grant No.A132001W07)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant No.2021-JBKY-11).
文摘During 2018 major geomagnetic storm,relativistic electron enhancements in extremely low L-shell regions(reaching L∼3)have been reported based on observations of ZH-1 and Van Allen probes satellites,and the storm is highly likely to be accelerated by strong whistler-mode waves occurring near very low L-shell regions where the plasmapause was suppressed.It is very interesting to observe the intense chorus-accelerated electrons locating in such low L-shells and filling into the slot region.In this paper,we further perform numerical simulation by solving the two-dimensional Fokker-Planck equation based on the bounce-averaged diffusion rates.Numerical results demonstrate the evolution processes of the chorus-driven electron flux and confirm the flux enhancement in low pitch angle ranges(20◦-50◦)after the wave-particle interaction for tens of hours.The simulation result is consistent with the observation of potential butterfly pitch angle distributions of relativistic electrons from both ZH-1 and Van Allen probes.