In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s...In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.展开更多
Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally in...Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally inefficient for graph algorithms,and dedicated architectures can provide high efficiency,but lack flexibility.To address these challenges,this paper proposes ParaGraph,a reduced instruction set computing-five(RISC-V)-based software-hardware co-designed graph computing accelerator that can process graph algorithms in parallel,and also establishes a performance evaluation model to assess the efficiency of co-acceleration.ParaGraph handles parallel processing of typical graph algorithms on the hardware side,while performing overall functional control on the software side with custom designed instructions.ParaGraph is verified on the XCVU440 field-programmable gate array(FPGA)board with E203,a RISC-V processor.Compared with current mainstream graph computing accelerators,ParaGraph consumes 7.94%less block RAM(BRAM)resources than ThunderGP.Its power consumption is reduced by 86.90%,24.90%,and 76.38%compared with ThunderGP,HitGraph,and GraphS,respectively.The power efficiency of connected components(CC)and degree centrality(DC)algorithms is improved by an average of 6.50 times over ThunderGP,2.51 times over HitGraph,and 3.99 times over GraphS.The software-hardware co-design acceleration performance indicators H/W.Cap for CC and DC are 13.02 and 14.02,respectively.展开更多
Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been d...Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been developed to create a cation-accelerating electric field on the surface of the cathode to achieve ultrafast Zn^(2+)diffusion kinetics.By employing electrodeposition to coat MoS_(2)on the surface of BaV_(6)O_(16)·3H_(2)O nanowires,the directional builtin electric field generated at the heterointerface acts as a cation accelerator,continuously accelerating Zn^(2+)diffusion into the active material.The optimized Zn^(2+)diffusion coefficient in CC@BaV-V_(6)O_(16)·3H_(2)@MoS_(2)(7.5×10^(8)cm^(2)s^(-1)) surpasses that of most reported V-based cathodes.Simultaneously,MoS_(2)serving as a cathodic armor extends the cycling life of the Zn-CC@BaV_(6)O_(16)·3H_(2)@MoS_(2)full batteries to over 10000 cycles.This work provides valuable insights into optimizing ion diffusion kinetics for high-performance energy storage devices.展开更多
Deep learning(DL)accelerators are critical for handling the growing computational demands of modern neural networks.Systolic array(SA)-based accelerators consist of a 2D mesh of processing elements(PEs)working coopera...Deep learning(DL)accelerators are critical for handling the growing computational demands of modern neural networks.Systolic array(SA)-based accelerators consist of a 2D mesh of processing elements(PEs)working cooperatively to accelerate matrix multiplication.The power efficiency of such accelerators is of primary importance,especially considering the edge AI regime.This work presents the SAPER-AI accelerator,an SA accelerator with power intent specified via a unified power format representation in a simplified manner with negligible microarchi-tectural optimization effort.Our proposed accelerator switches off rows and columns of PEs in a coarse-grained manner,thus leading to SA microarchitecture complying with the varying computational requirements of modern DL workloads.Our analysis demonstrates enhanced power efficiency ranging between 10% and 25% for the best case 32×32 and 64×64 SA designs,respectively.Additionally,the power delay product(PDP)exhibits a progressive improvement of around 6%for larger SA sizes.Moreover,a performance comparison between the MobileNet and ResNet50 models indicates generally better SA performance for the ResNet50 workload.This is due to the more regular convolutions portrayed by ResNet50 that are more favored by SAs,with the performance gap widening as the SA size increases.展开更多
A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear acce...A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear accelerator.The main components include a thermionic DC electron gun,an RF linear accelerator,a beam diagnostic chamber,and a beam exit window for electron beam irradiation.Therefore,reengineering must be performed based on the characteristics of the electron beam and its dynamics throughout the system.In this study,the electron beam current density emitted from the cathode was calculated based on the thermionic emission theory,and the result was used to produce the electron beam distribution in the gun using CST Studio Suite^(■)software.The properties of the electron beam and its acceleration in the linear accelerator and downstream diagnostic section were studied using the ASTRA electron beam dynamics simulation code,with the aim of producing an electron beam with an average energy of 4 MeV at the linear accelerator exit.The transverse beam profile and electron deposition dose in the ambient environment were calculated using Geant4 Monte Carlo simulation software to estimate the beam performance for the irradiation experiments.The parameters studied can be used as guidelines for machine operation and future experimental plans.展开更多
Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hype...Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.展开更多
How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed...How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed. To produce medical ^(82)Sr and ^(68)Ge by means of a proton accelerator in an irradiation time of 24 h, a proton beam current of250 l A, and an energy range E_(proton)= 100 →5 MeV, the cross sections and the neutron emission spectrum curves of(p,xn) reaction processes on Rb-85, Ga-69 and Ga-71 targets were calculated, and the activities and yields of the product were simulated for the reaction processes. Additionally, the integral yields of the reaction processes were determined via the calculated cross-sectional curves and the mass stopping power obtained from the X-PMSP program. Furthermore, based on the obtained results, the appropriate reaction processes for the production of ^(82)Sr and ^(68)Ge isotopes on Rb-85, Ga-69, and Ga-71 targets are discussed.展开更多
A novel TU derivative, N-phenyl-N'-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time ...A novel TU derivative, N-phenyl-N'-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time of NR compounds with STU is the shortest, indicating a more nucleophilic reaction occurs. The Py-GC/MS results present that the phenyl iso- thiocyanate fragment still remains in the NPUSTU compounds with or without extracting treatment, but no silane segment can be found in the vulcanizate with extracting treatment. Vibrations of C=S, NH and aromatic ring in FTIR experiments and a new methyne carbon peak, as well as the peaks of phenyl group of STU, in the solid state 13C-NMR experiments are found in the NR/STU vulcanizate with extracting treatment. Moreover, the crosslinking density of vulcanizates with STU evolves to lower level, indicating the sulfur atom of STU does not contribute to the sulfur crosslinking. Therefore, a new vulcanization kinetic mechanism of STU is propounded that the thiourea groups can graft to the rubber main chains as pendant groups by chemical bonds during the vulcanization process, which is in accordance with the experimental observations quite well.展开更多
基金supported by National Natural Science Foundation of China(No.11975261)。
文摘In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.
基金Supported by the National Key R&D Program of China(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005)+1 种基金the Shaanxi Province Key R&D Plan(No.2022GY-027,2021GY-029)the Key Scientific Research Project of Shaanxi Department of Education(No.22JY060).
文摘Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally inefficient for graph algorithms,and dedicated architectures can provide high efficiency,but lack flexibility.To address these challenges,this paper proposes ParaGraph,a reduced instruction set computing-five(RISC-V)-based software-hardware co-designed graph computing accelerator that can process graph algorithms in parallel,and also establishes a performance evaluation model to assess the efficiency of co-acceleration.ParaGraph handles parallel processing of typical graph algorithms on the hardware side,while performing overall functional control on the software side with custom designed instructions.ParaGraph is verified on the XCVU440 field-programmable gate array(FPGA)board with E203,a RISC-V processor.Compared with current mainstream graph computing accelerators,ParaGraph consumes 7.94%less block RAM(BRAM)resources than ThunderGP.Its power consumption is reduced by 86.90%,24.90%,and 76.38%compared with ThunderGP,HitGraph,and GraphS,respectively.The power efficiency of connected components(CC)and degree centrality(DC)algorithms is improved by an average of 6.50 times over ThunderGP,2.51 times over HitGraph,and 3.99 times over GraphS.The software-hardware co-design acceleration performance indicators H/W.Cap for CC and DC are 13.02 and 14.02,respectively.
基金National Natural Science Foundation of China (61761047 and 41876055)Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province。
文摘Aqueous zincion batteries are highly favored for grid-level energy storage owing to their low cost and high safety,but their practical application is limited by slow ion migration.To address this,a strategy has been developed to create a cation-accelerating electric field on the surface of the cathode to achieve ultrafast Zn^(2+)diffusion kinetics.By employing electrodeposition to coat MoS_(2)on the surface of BaV_(6)O_(16)·3H_(2)O nanowires,the directional builtin electric field generated at the heterointerface acts as a cation accelerator,continuously accelerating Zn^(2+)diffusion into the active material.The optimized Zn^(2+)diffusion coefficient in CC@BaV-V_(6)O_(16)·3H_(2)@MoS_(2)(7.5×10^(8)cm^(2)s^(-1)) surpasses that of most reported V-based cathodes.Simultaneously,MoS_(2)serving as a cathodic armor extends the cycling life of the Zn-CC@BaV_(6)O_(16)·3H_(2)@MoS_(2)full batteries to over 10000 cycles.This work provides valuable insights into optimizing ion diffusion kinetics for high-performance energy storage devices.
文摘Deep learning(DL)accelerators are critical for handling the growing computational demands of modern neural networks.Systolic array(SA)-based accelerators consist of a 2D mesh of processing elements(PEs)working cooperatively to accelerate matrix multiplication.The power efficiency of such accelerators is of primary importance,especially considering the edge AI regime.This work presents the SAPER-AI accelerator,an SA accelerator with power intent specified via a unified power format representation in a simplified manner with negligible microarchi-tectural optimization effort.Our proposed accelerator switches off rows and columns of PEs in a coarse-grained manner,thus leading to SA microarchitecture complying with the varying computational requirements of modern DL workloads.Our analysis demonstrates enhanced power efficiency ranging between 10% and 25% for the best case 32×32 and 64×64 SA designs,respectively.Additionally,the power delay product(PDP)exhibits a progressive improvement of around 6%for larger SA sizes.Moreover,a performance comparison between the MobileNet and ResNet50 models indicates generally better SA performance for the ResNet50 workload.This is due to the more regular convolutions portrayed by ResNet50 that are more favored by SAs,with the performance gap widening as the SA size increases.
基金supported by Chiang Mai University for providing infrastructure and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation[grant number B05F650022]for the software CST Studio Suite^(■)2023Financial support for the reengineering and commissioning of the accelerator system was provided by the Thailand Center of Excellence in Physics(ThEP Center),Science and Technology Park Chiang Mai University(CMU STeP)。
文摘A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear accelerator.The main components include a thermionic DC electron gun,an RF linear accelerator,a beam diagnostic chamber,and a beam exit window for electron beam irradiation.Therefore,reengineering must be performed based on the characteristics of the electron beam and its dynamics throughout the system.In this study,the electron beam current density emitted from the cathode was calculated based on the thermionic emission theory,and the result was used to produce the electron beam distribution in the gun using CST Studio Suite^(■)software.The properties of the electron beam and its acceleration in the linear accelerator and downstream diagnostic section were studied using the ASTRA electron beam dynamics simulation code,with the aim of producing an electron beam with an average energy of 4 MeV at the linear accelerator exit.The transverse beam profile and electron deposition dose in the ambient environment were calculated using Geant4 Monte Carlo simulation software to estimate the beam performance for the irradiation experiments.The parameters studied can be used as guidelines for machine operation and future experimental plans.
基金supported in part by the Major State Basic Research Development Program in China(Nos.2014CB845401 and2015CB856904)the National Natural Science Foundation of China(Nos.11421505,11520101004,11275250,11322547 and U1232206)Key Program of CAS for the Frontier Science(No.QYZDJ-SSW-SLH002)
文摘Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.
文摘How to operate^(82)Sr/^(82)Rb and ^(68)Ge/^(68)Ga generators used in the positron emission tomography scan process is explained, and the importance of ^(82)Sr and ^(68)Ge radionuclides for these generators is revealed. To produce medical ^(82)Sr and ^(68)Ge by means of a proton accelerator in an irradiation time of 24 h, a proton beam current of250 l A, and an energy range E_(proton)= 100 →5 MeV, the cross sections and the neutron emission spectrum curves of(p,xn) reaction processes on Rb-85, Ga-69 and Ga-71 targets were calculated, and the activities and yields of the product were simulated for the reaction processes. Additionally, the integral yields of the reaction processes were determined via the calculated cross-sectional curves and the mass stopping power obtained from the X-PMSP program. Furthermore, based on the obtained results, the appropriate reaction processes for the production of ^(82)Sr and ^(68)Ge isotopes on Rb-85, Ga-69, and Ga-71 targets are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.51003031 and 51303026)Science Foundation for Universities and Institutions of Dongguan City(No.2012108102008)the Research Fund for the Doctoral Program of Dongguan University of Technology(No.ZJ121002)
文摘A novel TU derivative, N-phenyl-N'-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time of NR compounds with STU is the shortest, indicating a more nucleophilic reaction occurs. The Py-GC/MS results present that the phenyl iso- thiocyanate fragment still remains in the NPUSTU compounds with or without extracting treatment, but no silane segment can be found in the vulcanizate with extracting treatment. Vibrations of C=S, NH and aromatic ring in FTIR experiments and a new methyne carbon peak, as well as the peaks of phenyl group of STU, in the solid state 13C-NMR experiments are found in the NR/STU vulcanizate with extracting treatment. Moreover, the crosslinking density of vulcanizates with STU evolves to lower level, indicating the sulfur atom of STU does not contribute to the sulfur crosslinking. Therefore, a new vulcanization kinetic mechanism of STU is propounded that the thiourea groups can graft to the rubber main chains as pendant groups by chemical bonds during the vulcanization process, which is in accordance with the experimental observations quite well.