The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was pre...In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.展开更多
The high level of noise is a special feature of the geomagnetic field on the territory of Slovenia. The tension of the Adriatic tectonic microplate, on which Slovenia entirely lies, was recognized as one of its source...The high level of noise is a special feature of the geomagnetic field on the territory of Slovenia. The tension of the Adriatic tectonic microplate, on which Slovenia entirely lies, was recognized as one of its sources. The interior of the Earth is also the source of geomagnetic jerks. They are impulses in the secular variation calculated on the basis of monthly or annual mean values of variation of the geomagnetic field. The paper presents an analysis of accelerations in a local magnetic field calculated on the bases of daily mean values of the magnetic field measured at PIA geomagnetic Observatory (Piran, Slovenia) in 2020. These accelerations indicate geomagnetic impulses at the regional level over days or weeks. Then these results are compared with the registered seismic activity in the West Balkans.展开更多
Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper f...Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper first investigates the effect of including vertical accelerations in the sliding response analysis of gravity dams subjected to a range of historical ground motion records separated in two groups according to their source-to-site distance.Analyses showed that the incidence of vertical accelerations on the sliding response of gravity dams is significantly higher for near-source records than for far- source records.The pseudo-static 30% load combination rule,commonly used in practice to account for the non-simultaneous occurrence of the peak horizontal and vertical accelerations,yielded good approximations of the minimum safety factors against sliding computed from time-history analyses.A method for empirically estimating the vertical response spectra based on horizontal spectra,accounting for the difference in frequency content and amplitudes between the two components is investigated.Results from analyses using spectrum compatible horizontal and vertical synthetic records also approximated well the sliding response of a gravity dam subjected to series of simultaneous horizontal and vertical historical earthquake records.展开更多
Although earthquake lights have been known since ancient times,it has not been easy to study them.It was not until the 60s that the first photographs of them were taken.During the Peruvian earthquake in 2007,it was po...Although earthquake lights have been known since ancient times,it has not been easy to study them.It was not until the 60s that the first photographs of them were taken.During the Peruvian earthquake in 2007,it was possible to obtain the fi rst fi lm recording on earthquake lights.Likewise,during the earthquakes in Ecuador in 2016 and in Mexico in 2017,two fi lms of the earthquake lights were recorded.These fi lm recordings have helped in the study of earthquake lights,both for their objectivity and for their informational content.Several causal mechanisms have been proposed to explain earthquake lights:piezoelectricity,radon emanation,fluid diffusion,friction-vaporization,positive holes and dipole currents,among others.In this work a time difference correlation between earthquake lights and seismic ground accelerations was found and we use both seismic data and fi lm recordings of earthquake lights to explain its origin.In the discussion section it is suggested that fracturing of rocks manifest itself to some extent in the form of static electricity producing earthquake lights through induction The induction model proposed is new and it can explain the formation of EQL,even if the earth’s crust has layers of large electrical resistivity.The model also explains the formation of seismic lights without the need for special conditions on the earth’s surface or in the atmosphere.A better understanding of the earthquake lights generation process can improve our understanding of seismicity and help in the prediction of earthquakes.展开更多
A rather simple straightforward procedure of estimating maximum values of the considered parameter (earthquake magnitude in a given region or seismic peak ground acceleration at the considered site) and quantiles of i...A rather simple straightforward procedure of estimating maximum values of the considered parameter (earthquake magnitude in a given region or seismic peak ground acceleration at the considered site) and quantiles of its probabilistic distribution in a future time interval of a given length is presented. To assess the peak ground acceleration using this method, the input information is the earthquake catalog and the regressive relation where the peak seismic acceleration at a given point bears the magnitude and epicentral distance of the site considered (seismic attenuation law). The method is based on the Bayesian approach, in which the influence of uncertainties of magnitudes and seismic acceleration values can be taken into account. The main assumptions for the method are the Poissonian character of the seismic event flow, a frequency-magnitude law of Gutenberg-Richter’s type with a cutoff maximum value for the estimated parameter, and an earthquake catalog that has a rather large number of events. The method has been applied to seismic hazard estimation in California, the Balkans, and Japan.展开更多
Over 800 accelerograms recorded by 272 ground-level stations during the Wenchuan earthquake are used to analyze the influence of rupture distance, local site conditions and azimuth on peak ground accelerations (PGAs...Over 800 accelerograms recorded by 272 ground-level stations during the Wenchuan earthquake are used to analyze the influence of rupture distance, local site conditions and azimuth on peak ground accelerations (PGAs). To achieve a better understanding of the characteristics of ground motions, the spatial distributions of the EW, NS and UD components of PGAs are obtained. Comparisons between the EW and NS components, the fault-normal and fault-parallel components, and the vertical and horizontal components of PGAs are performed, and the regression formula of the vertical-to-horizontal ratio of PGAs is developed. The attenuation relationship of peak horizontal accelerations (PHAs) is compared with several contemporary attenuation relationships. In addition, an analysis of residuals is conducted to identify the potential effects of rupture distance, azimuth and site conditions on the observed values of PHAs. The analysis focuses on medium-hard soil site conditions, as they provided most of the data used in this study.展开更多
Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects...Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects of local soil conditions,the continual approach proposed by A.S.Aleshin[1,2]was used,in which soil coefficients are a function of the continuously changing seismic rigidity.Soil coefficients were calculated using the new data of geological and geophysical surveys and findings of previous geotechnical studies.The used approach made it possible to avoid using soil categories and a jump change in characteristics of soil conditions and seismic impact.The developed seismic microzonation maps are prepared for further introduction into the normative documents of the Republic of Kazakhstan.展开更多
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment...As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.展开更多
Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-numb...Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-number(N)value for Jakarta city are available up to 100 m below the Earth’s surface even though the typical depths to bedrock are in excess of 100 m.This study referred to the base motion peak ground acceleration(PGA)values of 0.100 g,0.218 g and 0.378 g to predict the PSA values using the Nonlinear Earthquake site Response Analysis(NERA)to analyse a simulated dataset for the bedrock depths of 100 m,200 m,300 m,400 m and 500 m with conditioned by clayey and sandy soils.A new empirical equation of Vs=102.48 N0.297(m/s)was proposed to calculate the values of Vsused as an input parameter in the NERA programme for the prediction of seismic wave propagation.The results showed that the PSA values are dependent on the amplitude of seismic waves,depths of bedrock and the local site conditions.Changes in the PSA values from 41.0%to 51.5%and from 46.1%to 79.8%for the bedrocks overlain by sand,from 20.0%to 42.1%and from 45.9%to 58.8%for the bedrocks overlain by clay with increasing of bedrock depths from 200 m to 300 m and from 400 m to 500 m,respectively,were predicted for a 2500-year return period earthquake.Decreases in the PSA values by 41.0%,51.5%,46.1%,79.8%for the bedrocks overlain by sand and by 20.0%,42.1%,45.9%,58.8%for the bedrocks overlain by clay were predicted for a 2500-year return period earthquake due to the bedrock depth changes of 200 m,300 m,400 m,500 m.Large-magnitude earthquake of Jakarta city has a significant effect on an increase or a decrease of the PSA value with depth of bedrock and may cause the vibration damage to buildings and other constructions on the ground.The analysis of the PSA value and PSA ratio influenced by the PGA value,bedrock depth and local soil conditions will make a contribution to the design of earthquake-safe building for Jakarta city in the future.展开更多
Since high-speed railway bridges are subjected to cyclic loading by the continuous wheel loads traveling at high speed and regular spacing, their dynamic behavior is of extreme importance and has significant influence...Since high-speed railway bridges are subjected to cyclic loading by the continuous wheel loads traveling at high speed and regular spacing, their dynamic behavior is of extreme importance and has significant influence on the riding safety of the trains. To secure the riding safety of the trains, advanced railway countries have limited the vertical acceleration of the bridge slab below critical values at specific frequency domains. Since these limitations of the vertical acceleration constitute the most important factors in securing the dynamic safety of the bridges, these countries have opted for a conservative approach. However, the Korean specifications limit only the size of the peak acceleration without considering the frequency domain, which impede significantly rational evaluation of the high-speed railway bridges in Korea. In addition, the evaluation of the acceleration without consideration of the frequency domain is the cause of disagreement between the dynamic analysis and measurement results. This study conducts field monitoring and dynamic analysis on high-speed railway bridges to gather the acceleration signals and compare them. Significant difference in the size of the vertical acceleration was observed between the measured and dynamic analysis accelerations when discarding the frequency domain as done in the current specifications. The comparison of the accelerations considering only low frequencies below 30 Hz showed that the dynamic analysis reflected accurately the measured vertical acceleration.展开更多
Laser-driven ion acceleration,as produced by interaction of a high-intensity laser with a target,is a growing field of interest.One of the current challenges is to enhance the acceleration process,i.e.,to increase the...Laser-driven ion acceleration,as produced by interaction of a high-intensity laser with a target,is a growing field of interest.One of the current challenges is to enhance the acceleration process,i.e.,to increase the produced ion energy and the ion number and to shape the energy distribution for future applications.In this paper,we investigate the effect of helical coil(HC)targets on the laser-matter interaction process using a 150 TW laser.We demonstrate that HC targets significantly enhance proton acceleration,improving energy bunching and beam focusing and increasing the cutoff energy.For the first time,we extend this analysis to carbon ions,revealing a marked reduction in the number of low-energy carbon ions and the potential for energy bunching and post-acceleration through an optimized HC design.Simulations using the particle-in-cell code SOPHIE confirm the experimental results,providing insights into the current propagation and ion synchronization mechanisms in HCs.Our findings suggest that HC targets can be optimized for multispecies ion acceleration.展开更多
In recent years,integrated optical processing units(IOPUs)have demonstrated advantages in energy efficiency and computational speed for neural network inference applications.However,limited by optical integration tech...In recent years,integrated optical processing units(IOPUs)have demonstrated advantages in energy efficiency and computational speed for neural network inference applications.However,limited by optical integration technology,the practicality and versatility of IOPU face serious challenges.In this work,a scalable parallel photonic processing unit(SPPU)for various neural network accelerations based on high-speed phase modulation is proposed and implemented on a silicon-on-insulator platform,which supports parallel processing and can switch between multiple computational paradigms simply and without latency to infer different neural network structures,enabling to maximize the utility of on-chip components.The SPPU adopts a scalable and process-friendly architecture design,with a preeminent photonic-core energy efficiency of 0.83 TOPS/W,two to ten times higher than existing integrated solutions.In the proof-of-concept experiment,a convolutional neural network(CNN),a residual CNN,and a recurrent neural network(RNN)are all implemented on our photonic processor to handle multiple tasks of handwritten digit classification,signal modulation format recognition,and review emotion recognition.The SPPU achieves multi-task parallel processing capability,serving as a promising and attractive research route to maximize the utility of on-chip components under the constraints of integrated technology,which helps to make IOPU more practical and universal.展开更多
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper th...Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.展开更多
Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator labora...Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator laboratories has revealed that SRF faults are the leading cause of short machine downtime trips.When a cavity fault occurs,system experts analyze the time-series data recorded by low-level RF systems and identify the fault type.However,this requires expertise and intuition,posing a major challenge for control-room operators.Here,we propose an expert feature-based machine learning model for automating SRF cavity fault recognition.The main challenge in converting the"expert reasoning"process for SRF faults into a"model inference"process lies in feature extraction,which is attributed to the associated multidimensional and complex time-series waveforms.Existing autoregression-based feature-extraction methods require the signal to be stable and autocorrelated,resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns.To address these issues,we introduce expertise into the classification model through reasonable feature engineering.We demonstrate the feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements(CAFE2).Although specific faults in SRF cavities may vary across different accelerators,similarities exist in the RF signals.Therefore,this study provides valuable guidance for fault analysis of the entire SRF community.展开更多
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play...The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.展开更多
The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination ...The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the...The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the PGA immediately after an earthquake occurs allows for the issuing of a warning by an earthquake early warning system.In this study,we propose a deep learning model,ConvMixer,to predict the PGA recorded by weak-motion velocity seismometers in Japan.We use 5-s threecomponent seismograms,from 2 s before until 3 s after the P-wave arrival time of the earthquake.Our dataset comprised more than 50,000 single-station waveforms recorded by 10 seismic stations in the K-NET,Kiki-NET,and Hi-Net networks between 2004 and 2023.The proposed ConvMixer is a patch-based model that extracts global features from input seismic data and predicts the PGA of an earthquake by combining depth and pointwise convolutions.The proposed ConvMixer network had a mean absolute error of 2.143 when applied to the test set and outperformed benchmark deep learning models.In addition,the proposed ConvMixer demonstrated the ability to predict the PGA at the corresponding station site based on 1-second waveforms obtained immediately after the arrival time of the P-wave.展开更多
Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to inv...Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
文摘In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.
文摘The high level of noise is a special feature of the geomagnetic field on the territory of Slovenia. The tension of the Adriatic tectonic microplate, on which Slovenia entirely lies, was recognized as one of its sources. The interior of the Earth is also the source of geomagnetic jerks. They are impulses in the secular variation calculated on the basis of monthly or annual mean values of variation of the geomagnetic field. The paper presents an analysis of accelerations in a local magnetic field calculated on the bases of daily mean values of the magnetic field measured at PIA geomagnetic Observatory (Piran, Slovenia) in 2020. These accelerations indicate geomagnetic impulses at the regional level over days or weeks. Then these results are compared with the registered seismic activity in the West Balkans.
基金Natural Seienee and Engineering Researeh Couneilof Canada(NSERC),Hydro-Qucbcc,Alcanthe "fonds Pour la Formation de Chereheurs et l'Aide ala Recherehe"(FCAR) of Quebec
文摘Seismic safety assessment of gravity dams has become a major concern in many regions of the world while the effects of vertical seismic accelerations on the response of structures remain poorly understood.This paper first investigates the effect of including vertical accelerations in the sliding response analysis of gravity dams subjected to a range of historical ground motion records separated in two groups according to their source-to-site distance.Analyses showed that the incidence of vertical accelerations on the sliding response of gravity dams is significantly higher for near-source records than for far- source records.The pseudo-static 30% load combination rule,commonly used in practice to account for the non-simultaneous occurrence of the peak horizontal and vertical accelerations,yielded good approximations of the minimum safety factors against sliding computed from time-history analyses.A method for empirically estimating the vertical response spectra based on horizontal spectra,accounting for the difference in frequency content and amplitudes between the two components is investigated.Results from analyses using spectrum compatible horizontal and vertical synthetic records also approximated well the sliding response of a gravity dam subjected to series of simultaneous horizontal and vertical historical earthquake records.
文摘Although earthquake lights have been known since ancient times,it has not been easy to study them.It was not until the 60s that the first photographs of them were taken.During the Peruvian earthquake in 2007,it was possible to obtain the fi rst fi lm recording on earthquake lights.Likewise,during the earthquakes in Ecuador in 2016 and in Mexico in 2017,two fi lms of the earthquake lights were recorded.These fi lm recordings have helped in the study of earthquake lights,both for their objectivity and for their informational content.Several causal mechanisms have been proposed to explain earthquake lights:piezoelectricity,radon emanation,fluid diffusion,friction-vaporization,positive holes and dipole currents,among others.In this work a time difference correlation between earthquake lights and seismic ground accelerations was found and we use both seismic data and fi lm recordings of earthquake lights to explain its origin.In the discussion section it is suggested that fracturing of rocks manifest itself to some extent in the form of static electricity producing earthquake lights through induction The induction model proposed is new and it can explain the formation of EQL,even if the earth’s crust has layers of large electrical resistivity.The model also explains the formation of seismic lights without the need for special conditions on the earth’s surface or in the atmosphere.A better understanding of the earthquake lights generation process can improve our understanding of seismicity and help in the prediction of earthquakes.
文摘A rather simple straightforward procedure of estimating maximum values of the considered parameter (earthquake magnitude in a given region or seismic peak ground acceleration at the considered site) and quantiles of its probabilistic distribution in a future time interval of a given length is presented. To assess the peak ground acceleration using this method, the input information is the earthquake catalog and the regressive relation where the peak seismic acceleration at a given point bears the magnitude and epicentral distance of the site considered (seismic attenuation law). The method is based on the Bayesian approach, in which the influence of uncertainties of magnitudes and seismic acceleration values can be taken into account. The main assumptions for the method are the Poissonian character of the seismic event flow, a frequency-magnitude law of Gutenberg-Richter’s type with a cutoff maximum value for the estimated parameter, and an earthquake catalog that has a rather large number of events. The method has been applied to seismic hazard estimation in California, the Balkans, and Japan.
基金National Natural Science Foundation of China Under Grant No. 90715038, 50878199 and 50808166National Basic Research Program of China Under Grant No. 2007CB714200
文摘Over 800 accelerograms recorded by 272 ground-level stations during the Wenchuan earthquake are used to analyze the influence of rupture distance, local site conditions and azimuth on peak ground accelerations (PGAs). To achieve a better understanding of the characteristics of ground motions, the spatial distributions of the EW, NS and UD components of PGAs are obtained. Comparisons between the EW and NS components, the fault-normal and fault-parallel components, and the vertical and horizontal components of PGAs are performed, and the regression formula of the vertical-to-horizontal ratio of PGAs is developed. The attenuation relationship of peak horizontal accelerations (PHAs) is compared with several contemporary attenuation relationships. In addition, an analysis of residuals is conducted to identify the potential effects of rupture distance, azimuth and site conditions on the observed values of PHAs. The analysis focuses on medium-hard soil site conditions, as they provided most of the data used in this study.
基金provided through the Ministry of Education and Sciencecarried out as a part of the project“Development of the Seismic Microzonation Map for the Territory of Almaty City on a New Methodical Base”(state registration No 0115RK02701)funded within the state funding.
文摘Seismic microzonation for Almaty city for the first time use probabilistic approach and hazard is expressed in terms of not only macroseismic intensity,but also Peak Ground Acceleration(PGA).To account for the effects of local soil conditions,the continual approach proposed by A.S.Aleshin[1,2]was used,in which soil coefficients are a function of the continuously changing seismic rigidity.Soil coefficients were calculated using the new data of geological and geophysical surveys and findings of previous geotechnical studies.The used approach made it possible to avoid using soil categories and a jump change in characteristics of soil conditions and seismic impact.The developed seismic microzonation maps are prepared for further introduction into the normative documents of the Republic of Kazakhstan.
基金"Development of the Map of General Seismic Zoning in the Territory of the Republic of Kazakhstan" (state registration 0113RK01142)"Development of the map of Seismic Microzoning of the Territory of Almaty City"(state registration 0115RK02701)funded within the state funding
文摘As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.
基金the financial support from the Universitas Syiah Kuala and Ministry of Research,Technology and Higher Education,Indonesia,for Professors Research Scheme Grant No.268/UN11/SPK/PNBP/2020 awarded to MMTon Duc Thang University,Vietnam,for Research Funding Contract No.551/2019/TDT-HDLV-NCV awarded to MAF
文摘Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-number(N)value for Jakarta city are available up to 100 m below the Earth’s surface even though the typical depths to bedrock are in excess of 100 m.This study referred to the base motion peak ground acceleration(PGA)values of 0.100 g,0.218 g and 0.378 g to predict the PSA values using the Nonlinear Earthquake site Response Analysis(NERA)to analyse a simulated dataset for the bedrock depths of 100 m,200 m,300 m,400 m and 500 m with conditioned by clayey and sandy soils.A new empirical equation of Vs=102.48 N0.297(m/s)was proposed to calculate the values of Vsused as an input parameter in the NERA programme for the prediction of seismic wave propagation.The results showed that the PSA values are dependent on the amplitude of seismic waves,depths of bedrock and the local site conditions.Changes in the PSA values from 41.0%to 51.5%and from 46.1%to 79.8%for the bedrocks overlain by sand,from 20.0%to 42.1%and from 45.9%to 58.8%for the bedrocks overlain by clay with increasing of bedrock depths from 200 m to 300 m and from 400 m to 500 m,respectively,were predicted for a 2500-year return period earthquake.Decreases in the PSA values by 41.0%,51.5%,46.1%,79.8%for the bedrocks overlain by sand and by 20.0%,42.1%,45.9%,58.8%for the bedrocks overlain by clay were predicted for a 2500-year return period earthquake due to the bedrock depth changes of 200 m,300 m,400 m,500 m.Large-magnitude earthquake of Jakarta city has a significant effect on an increase or a decrease of the PSA value with depth of bedrock and may cause the vibration damage to buildings and other constructions on the ground.The analysis of the PSA value and PSA ratio influenced by the PGA value,bedrock depth and local soil conditions will make a contribution to the design of earthquake-safe building for Jakarta city in the future.
文摘Since high-speed railway bridges are subjected to cyclic loading by the continuous wheel loads traveling at high speed and regular spacing, their dynamic behavior is of extreme importance and has significant influence on the riding safety of the trains. To secure the riding safety of the trains, advanced railway countries have limited the vertical acceleration of the bridge slab below critical values at specific frequency domains. Since these limitations of the vertical acceleration constitute the most important factors in securing the dynamic safety of the bridges, these countries have opted for a conservative approach. However, the Korean specifications limit only the size of the peak acceleration without considering the frequency domain, which impede significantly rational evaluation of the high-speed railway bridges in Korea. In addition, the evaluation of the acceleration without consideration of the frequency domain is the cause of disagreement between the dynamic analysis and measurement results. This study conducts field monitoring and dynamic analysis on high-speed railway bridges to gather the acceleration signals and compare them. Significant difference in the size of the vertical acceleration was observed between the measured and dynamic analysis accelerations when discarding the frequency domain as done in the current specifications. The comparison of the accelerations considering only low frequencies below 30 Hz showed that the dynamic analysis reflected accurately the measured vertical acceleration.
基金supported by the CEA/DAM Laser Plasma Experiments Validation Project and the CEA/DAM Basic Technical and Scientific Studies Projectsupported by the National Sciences and Engineering Research Council of Canada(NSERC)(Grant Nos.RGPIN-2023-05459 and ALLRP 556340-20)+3 种基金the Digital Research Alliance of Canada(Job pve-323-ac)the Canada Foundation for Innovation(CFI)the Ministère de l’Économie,de l’Innovation et de l’Énergie(MEIE)from QuébecThis study was granted access to the HPC resources of IRENE under allocation Grant No.A0170512899 made by GENCI.We acknowledge the financial support of the IdEx University of Bordeaux/Grand Research Program“GPR LIGHT”and of the Graduate Program on Light Sciences and Technologies of the University of Bordeaux.
文摘Laser-driven ion acceleration,as produced by interaction of a high-intensity laser with a target,is a growing field of interest.One of the current challenges is to enhance the acceleration process,i.e.,to increase the produced ion energy and the ion number and to shape the energy distribution for future applications.In this paper,we investigate the effect of helical coil(HC)targets on the laser-matter interaction process using a 150 TW laser.We demonstrate that HC targets significantly enhance proton acceleration,improving energy bunching and beam focusing and increasing the cutoff energy.For the first time,we extend this analysis to carbon ions,revealing a marked reduction in the number of low-energy carbon ions and the potential for energy bunching and post-acceleration through an optimized HC design.Simulations using the particle-in-cell code SOPHIE confirm the experimental results,providing insights into the current propagation and ion synchronization mechanisms in HCs.Our findings suggest that HC targets can be optimized for multispecies ion acceleration.
基金National Natural Science Foundation of China(11902358,62302504)。
文摘In recent years,integrated optical processing units(IOPUs)have demonstrated advantages in energy efficiency and computational speed for neural network inference applications.However,limited by optical integration technology,the practicality and versatility of IOPU face serious challenges.In this work,a scalable parallel photonic processing unit(SPPU)for various neural network accelerations based on high-speed phase modulation is proposed and implemented on a silicon-on-insulator platform,which supports parallel processing and can switch between multiple computational paradigms simply and without latency to infer different neural network structures,enabling to maximize the utility of on-chip components.The SPPU adopts a scalable and process-friendly architecture design,with a preeminent photonic-core energy efficiency of 0.83 TOPS/W,two to ten times higher than existing integrated solutions.In the proof-of-concept experiment,a convolutional neural network(CNN),a residual CNN,and a recurrent neural network(RNN)are all implemented on our photonic processor to handle multiple tasks of handwritten digit classification,signal modulation format recognition,and review emotion recognition.The SPPU achieves multi-task parallel processing capability,serving as a promising and attractive research route to maximize the utility of on-chip components under the constraints of integrated technology,which helps to make IOPU more practical and universal.
基金supported by the National Natural Science Foundation of China(82071143,82371000,82270361)Key Research and Development Program of Jiangsu Province(BE2022795)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_1801)the Jiangsu Province Capability Improvement Project through the Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227).
文摘Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
基金supported by the studies of intelligent LLRF control algorithms for superconducting RF cavities(No.E129851YR0)the National Natural Science Foundation of China(No.U22A20261)Applications of Artificial Intelligence in the Stability Study of Superconducting Linear Accelerators(No.E429851YR0)。
文摘Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator laboratories has revealed that SRF faults are the leading cause of short machine downtime trips.When a cavity fault occurs,system experts analyze the time-series data recorded by low-level RF systems and identify the fault type.However,this requires expertise and intuition,posing a major challenge for control-room operators.Here,we propose an expert feature-based machine learning model for automating SRF cavity fault recognition.The main challenge in converting the"expert reasoning"process for SRF faults into a"model inference"process lies in feature extraction,which is attributed to the associated multidimensional and complex time-series waveforms.Existing autoregression-based feature-extraction methods require the signal to be stable and autocorrelated,resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns.To address these issues,we introduce expertise into the classification model through reasonable feature engineering.We demonstrate the feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements(CAFE2).Although specific faults in SRF cavities may vary across different accelerators,similarities exist in the RF signals.Therefore,this study provides valuable guidance for fault analysis of the entire SRF community.
基金funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(grant number 22KJD440001)Changzhou Science&Technology Program(grant number CJ20220232).
文摘The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes.
基金sponsored by the National Key Research and Development Program of China(2021YFB3802000 and 2021YFB3802004)the National Natural Science Foundation of China(52172016).
文摘The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金the National Research Institute of Astronomy and Geophysics (NRIAG) for supporting this work
文摘The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the PGA immediately after an earthquake occurs allows for the issuing of a warning by an earthquake early warning system.In this study,we propose a deep learning model,ConvMixer,to predict the PGA recorded by weak-motion velocity seismometers in Japan.We use 5-s threecomponent seismograms,from 2 s before until 3 s after the P-wave arrival time of the earthquake.Our dataset comprised more than 50,000 single-station waveforms recorded by 10 seismic stations in the K-NET,Kiki-NET,and Hi-Net networks between 2004 and 2023.The proposed ConvMixer is a patch-based model that extracts global features from input seismic data and predicts the PGA of an earthquake by combining depth and pointwise convolutions.The proposed ConvMixer network had a mean absolute error of 2.143 when applied to the test set and outperformed benchmark deep learning models.In addition,the proposed ConvMixer demonstrated the ability to predict the PGA at the corresponding station site based on 1-second waveforms obtained immediately after the arrival time of the P-wave.
基金Dalian Science and Technology Innovation Fund Project (2022JJ11CG008)。
文摘Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.