This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the...The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the PGA immediately after an earthquake occurs allows for the issuing of a warning by an earthquake early warning system.In this study,we propose a deep learning model,ConvMixer,to predict the PGA recorded by weak-motion velocity seismometers in Japan.We use 5-s threecomponent seismograms,from 2 s before until 3 s after the P-wave arrival time of the earthquake.Our dataset comprised more than 50,000 single-station waveforms recorded by 10 seismic stations in the K-NET,Kiki-NET,and Hi-Net networks between 2004 and 2023.The proposed ConvMixer is a patch-based model that extracts global features from input seismic data and predicts the PGA of an earthquake by combining depth and pointwise convolutions.The proposed ConvMixer network had a mean absolute error of 2.143 when applied to the test set and outperformed benchmark deep learning models.In addition,the proposed ConvMixer demonstrated the ability to predict the PGA at the corresponding station site based on 1-second waveforms obtained immediately after the arrival time of the P-wave.展开更多
We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecon...We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research.展开更多
This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimenta...This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimental measurements and theoretical calculations,we propose a novel three-factor competition mechanism to explain this phenomenon.TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s,surpassing HMX-based counterparts.However,cylinder expansion tests revealed a 15%reduction in metal acceleration ability.Thermochemical measurements showed lower detonation heat for TKX-50(4900 J/g)versus HMX(5645 J/g).Our mechanism involves:(1)compositional effects prevailing at high pressures;(2)Energy release becoming essential as pressure drops;(3)Pressure-dependent product composition evolution functioning at low pressure.VLW code calculations unveiled a"crossover"in Hugoniot curves,lending support to this mechanism.This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials,with significant implications for the design and optimization of future high-energy density materials.展开更多
Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted t...Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted to develop conversion models between the acceleration response spectrum(SA)and the pseudo-acceleration response spectrum(PSA).Our previous studies found that the relationship between SA and PSA is affected by magnitude,distance,and site class.Subsequently,we developed an SA/PSA model incorporating these effects.However,this model is suitable for cases with small and moderate magnitudes and its accuracy is not good enough for cases with large magnitudes.This paper aims to develop an efficient SA/PSA model by considering influences of magnitude,distance,and site class,which can be applied to cases not only with small or moderate magnitudes but also with large ones.For this purpose,regression analyses were conducted using 16,660 horizontal seismic records with a wider range of magnitude.The magnitude of these seismic records varies from 4 to 9 and the distances vary from 10 to 200 km.These ground motions were recorded at 338 stations covering four site classes.By comparing them with existing models,it was found that the proposed model shows better accuracy for cases with any magnitudes,distances,and site classes considered in this study.展开更多
The article contains an error regarding the electron spectra displayed in Figs.4 and 5 and the data extracted from these spectra.The measurements were made with the SESAME magnetic spectrometer,the working principle o...The article contains an error regarding the electron spectra displayed in Figs.4 and 5 and the data extracted from these spectra.The measurements were made with the SESAME magnetic spectrometer,the working principle of which is recalled in Fig.1.Specifically,a magnetic dipole is used to separate charged particles(electrons in the case of this experiment)depending on their energy,charge and mass.The deflected particles then hit an imaging plate(IP)and deposit energy in its sensitive layer.The kinetic energy of the particles can be evaluated from their impact position on the IP and their number can be inferred from the local energy deposition.展开更多
This research examines the dynamics of a cosh-Gaussian laser pulse travelling through a vacuum and its impact on electron acceleration. We examine the impact of several critical factors, such as laser electric field a...This research examines the dynamics of a cosh-Gaussian laser pulse travelling through a vacuum and its impact on electron acceleration. We examine the impact of several critical factors, such as laser electric field amplitude, decentered parameter, beam waist, and laser chirp parameter, on the energy gain of electrons using coupled momentum equations. Our results indicate that the energy acquisition of electrons escalates with the amplitude of the laser electric field, decentered parameter, and chirp parameter. An appropriate beam waist is essential for attaining energyefficient electron acceleration in a vacuum. Through the optimization of these parameters, we get a maximum electron energy gain of 2.80 Ge V. This study highlights the significance of customized laser pulse attributes in improving electron acceleration and aids in the progression of high-energy particle physics.展开更多
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ...Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.展开更多
Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration response...Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios.展开更多
The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of...The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.展开更多
High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique a...High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique applications.This paper details the successful commissioning of the 1 PW experimental area at the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)facility in Romania,using both of the available laser arms.The experimental setup featured a short focal parabolic mirror to accelerate protons through the target normal sheath acceleration mechanism.Detailed experiments were conducted using various metallic and diamond-like carbon targets to investigate the dependence of the proton acceleration on different laser parameters.Furthermore,the paper discusses the critical role of the laser temporal profil in optimizing proton acceleration,supported by hydrodynamic simulations that are correlated with experimental outcomes.The finding underscore the potential of the ELI-NP facility to advance research in laser–plasma physics and contribute significantl to high-energy physics applications.The results of this commissioning establish a strong foundation for experiments by future users.展开更多
Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities...Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities:Planck length and time represent the step size and period of the helical motion of light speed in the earliest cosmic space following the Big Bang;Planck energy constitutes the minimum energy unit associated with this spatial helical motion;Planck mass is the mass derived from this minimum energy unit.In accordance with the expression of Planck time,we have derived the relationship formula between gravitational acceleration and the speed of light,thereby uncovering an inevitable intrinsic connection between the gravitational field and the electromagnetic field,and indicating that the four fundamental forces in the universe can be unified.Finally,through our spatial helical motion model,we computed the specific values of the four fundamental forces at the moment of strong nuclear force separation.The results reveal that they are in complete agreement with the theoretical calculation values or experimental values in modern physics and quantum mechanics,thereby providing an interesting hint for the unified field theories.展开更多
We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acc...We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acceleration,which involves irradiating the narrow(submicrometer)side of a tape target.This results in the generation of a surface plasma wave and the subsequent acceleration of a proton bunch with high peak energy,quasi-monochromaticity,low energy bandwidth,and low divergence by the electrostatic field induced at the target rear.Up to now,the higher-Z(e.g.,carbon)ion bunches obtained with the peeler scheme have been found to exhibit an exponentially decaying thermal-like energy spectrum.To achieve a low energy bandwidth,we place a mass-limited carbon structure at the rear of the target.Using 3D particle-in-cell simulations,we show that a quasi-monochromatic carbon bunch can indeed be obtained.With a multi-PW laser pulse,10^(8) carbon ions with peak energy~110 MeV/u and with a divergence of 20° in the vertical plane and~1° in the horizontal plane can be generated.The quasi-monochromaticity,together with the low duration of the beam and in combination with the versatility of high-power laser facilities,should make this scheme attractive for practical applications such as heavy ion cancer therapy and higher-resolution diagnostics of extreme plasma states.展开更多
To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration decoupling algorithms,a new decoupling algorithm is proposed along with a corresponding auto-compensation ...To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration decoupling algorithms,a new decoupling algorithm is proposed along with a corresponding auto-compensation algorithm.Firstly,based on Kane’s method,the dynamics model of the six-axis acceleration sensing mechanism is formed to determine the relationship between accelerations and branch forces.Then,with the trapezoidal rule,a solution algorithm for the dynamics model is developed.The virtual prototype tests show that the computation of this algorithm is five times more efficient than that of the ADAMS core algorithm.Besides,this solution algorithm is applied to the“12-6”configuration and“9-3”configuration.The results show that the efficiency of the former is nearly 3.3 times that of the latter.Finally,based on vibration theory,an auto-compensation algorithm for the solution algorithm is established.Virtual prototype tests indicate that with 40%noise interference,the auto-compensation algorithm achieves misjudgement rate and omission rate of only 4.0%and 4.5%,respectively,and the errors in the solving process converge.展开更多
The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is high...The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.展开更多
In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s...In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.展开更多
In laser wakefield acceleration,injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance.In this paper,the pro...In laser wakefield acceleration,injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance.In this paper,the process of laser wakefield acceleration with an external injection at 10 pC has been studied in simulations.A Bayesian optimization method is used to optimize the key laser and plasma parameters so that the electron beam is accelerated to the expected energy with a small emittance and energy spread growth.The effect of the rising edge of the plasma on the transverse properties of the electron beam is simulated and optimized in order to ensure that the external electron beam is injected into the plasma without significant emittance growth.Finally,a high-quality electron beam with an energy of 1.5 GeV,a normalized transverse emittance of 0.5 mm·mrad and a relative energy spread of 0.5%at 10 pC is obtained.展开更多
The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted....The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.展开更多
In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engi...In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engine,and nozzle is proposed in this paper.In the proposed propulsion system control scheme,the inlet,engine,and nozzle are simultaneously adjusted through the FSQP method.In order to implement the control scheme design,an aero-propulsion system componentlevel model is built to simulate the inlet working performance and the matching problems between the inlet and engine.Meanwhile,a stabilizing inlet control scheme is designed to solve the inlet control problems.In optimal control of the aero-propulsion system acceleration process,the inlet is an emphasized control unit in the optimal acceleration control system.Two inlet control patterns are discussed in the simulation.The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively,acceleration performance could be obviously enhanced.Acceleration objectives could be obtained with a faster acceleration time by5%.展开更多
Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelm...Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金the National Research Institute of Astronomy and Geophysics (NRIAG) for supporting this work
文摘The level of ground shaking,as determined by the peak ground acceleration(PGA),can be used to analyze seismic hazard at a certain location and is crucial for constructing earthquake-resistant structures.Predicting the PGA immediately after an earthquake occurs allows for the issuing of a warning by an earthquake early warning system.In this study,we propose a deep learning model,ConvMixer,to predict the PGA recorded by weak-motion velocity seismometers in Japan.We use 5-s threecomponent seismograms,from 2 s before until 3 s after the P-wave arrival time of the earthquake.Our dataset comprised more than 50,000 single-station waveforms recorded by 10 seismic stations in the K-NET,Kiki-NET,and Hi-Net networks between 2004 and 2023.The proposed ConvMixer is a patch-based model that extracts global features from input seismic data and predicts the PGA of an earthquake by combining depth and pointwise convolutions.The proposed ConvMixer network had a mean absolute error of 2.143 when applied to the test set and outperformed benchmark deep learning models.In addition,the proposed ConvMixer demonstrated the ability to predict the PGA at the corresponding station site based on 1-second waveforms obtained immediately after the arrival time of the P-wave.
基金supported by the National Key R&D Program of China(Nos.2022YFA1603200 and 2022YFA1603201)National Natural Science Foundation of China(Nos.12135001,11921006,12475243 and 11825502)+1 种基金Strategic Priority Research Program of CAS(No.XDA25050900)support from the National Natural Science Funds for Distinguished Young Scholar(No.11825502)。
文摘We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research.
基金support provided by the National Natural Science Foundation of China(Grant No.12102405)the Presidential Foundation of CAEP(Grant No.YZJJZQ2023008).
文摘This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimental measurements and theoretical calculations,we propose a novel three-factor competition mechanism to explain this phenomenon.TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s,surpassing HMX-based counterparts.However,cylinder expansion tests revealed a 15%reduction in metal acceleration ability.Thermochemical measurements showed lower detonation heat for TKX-50(4900 J/g)versus HMX(5645 J/g).Our mechanism involves:(1)compositional effects prevailing at high pressures;(2)Energy release becoming essential as pressure drops;(3)Pressure-dependent product composition evolution functioning at low pressure.VLW code calculations unveiled a"crossover"in Hugoniot curves,lending support to this mechanism.This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials,with significant implications for the design and optimization of future high-energy density materials.
基金National Natural Science Foundation of China under Grant No.52278135。
文摘Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted to develop conversion models between the acceleration response spectrum(SA)and the pseudo-acceleration response spectrum(PSA).Our previous studies found that the relationship between SA and PSA is affected by magnitude,distance,and site class.Subsequently,we developed an SA/PSA model incorporating these effects.However,this model is suitable for cases with small and moderate magnitudes and its accuracy is not good enough for cases with large magnitudes.This paper aims to develop an efficient SA/PSA model by considering influences of magnitude,distance,and site class,which can be applied to cases not only with small or moderate magnitudes but also with large ones.For this purpose,regression analyses were conducted using 16,660 horizontal seismic records with a wider range of magnitude.The magnitude of these seismic records varies from 4 to 9 and the distances vary from 10 to 200 km.These ground motions were recorded at 338 stations covering four site classes.By comparing them with existing models,it was found that the proposed model shows better accuracy for cases with any magnitudes,distances,and site classes considered in this study.
文摘The article contains an error regarding the electron spectra displayed in Figs.4 and 5 and the data extracted from these spectra.The measurements were made with the SESAME magnetic spectrometer,the working principle of which is recalled in Fig.1.Specifically,a magnetic dipole is used to separate charged particles(electrons in the case of this experiment)depending on their energy,charge and mass.The deflected particles then hit an imaging plate(IP)and deposit energy in its sensitive layer.The kinetic energy of the particles can be evaluated from their impact position on the IP and their number can be inferred from the local energy deposition.
文摘This research examines the dynamics of a cosh-Gaussian laser pulse travelling through a vacuum and its impact on electron acceleration. We examine the impact of several critical factors, such as laser electric field amplitude, decentered parameter, beam waist, and laser chirp parameter, on the energy gain of electrons using coupled momentum equations. Our results indicate that the energy acquisition of electrons escalates with the amplitude of the laser electric field, decentered parameter, and chirp parameter. An appropriate beam waist is essential for attaining energyefficient electron acceleration in a vacuum. Through the optimization of these parameters, we get a maximum electron energy gain of 2.80 Ge V. This study highlights the significance of customized laser pulse attributes in improving electron acceleration and aids in the progression of high-energy particle physics.
基金supported by the Basic Research on Dynamic Real-time Modeling and Onboard Adaptive Modeling of Aero Engine,China(No.QZPY202308)。
文摘Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.
基金National Natural Science Foundation of China(Grant Nos.52408314,52278292)Chongqing Outstanding Youth Science Foundation(Grant No.CSTB2023NSCQ-JQX0029)+1 种基金Science and Technology Project of Sichuan Provincial Transportation Department(Grant No.2023-ZL-03)Science and Technology Project of Guizhou Provincial Transportation Department(Grant No.2024-122-018).
文摘Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios.
基金supported in part by the National Natural Science Foundation of China(No.52372389)the Jiangsu Province Excellent Postdoctoral Program of China(No.2023ZB494)+1 种基金the Basic Research Program of Jiangsu Province,China(No.BK20241412)the National Science Foundation for Post-doctoral Scientists of China(No.2024M754131)。
文摘The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.
基金supported by the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)PhaseⅡa project co-finance by the Romanian Government and the European Union through the European Regional Development Fund,by the Romanian Ministry of Education and Research CNCS-UEFISCDI(Project No.PN-ⅡIP4-IDPCCF-2016-0164)+1 种基金Nucleu Projects(Grant No.PN 23210105 and 19060105)supports ELI-NP through IOSIN funds as a Facility of National Interest。
文摘High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique applications.This paper details the successful commissioning of the 1 PW experimental area at the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)facility in Romania,using both of the available laser arms.The experimental setup featured a short focal parabolic mirror to accelerate protons through the target normal sheath acceleration mechanism.Detailed experiments were conducted using various metallic and diamond-like carbon targets to investigate the dependence of the proton acceleration on different laser parameters.Furthermore,the paper discusses the critical role of the laser temporal profil in optimizing proton acceleration,supported by hydrodynamic simulations that are correlated with experimental outcomes.The finding underscore the potential of the ELI-NP facility to advance research in laser–plasma physics and contribute significantl to high-energy physics applications.The results of this commissioning establish a strong foundation for experiments by future users.
文摘Based on the mass-energy equation of special relativity and the assumption of the helical motion of light speed in cosmic space,we have theoretically demonstrated the true implications of Planck’s physical quantities:Planck length and time represent the step size and period of the helical motion of light speed in the earliest cosmic space following the Big Bang;Planck energy constitutes the minimum energy unit associated with this spatial helical motion;Planck mass is the mass derived from this minimum energy unit.In accordance with the expression of Planck time,we have derived the relationship formula between gravitational acceleration and the speed of light,thereby uncovering an inevitable intrinsic connection between the gravitational field and the electromagnetic field,and indicating that the four fundamental forces in the universe can be unified.Finally,through our spatial helical motion model,we computed the specific values of the four fundamental forces at the moment of strong nuclear force separation.The results reveal that they are in complete agreement with the theoretical calculation values or experimental values in modern physics and quantum mechanics,thereby providing an interesting hint for the unified field theories.
基金the support of the Romanian Government and the European Union through the European Regional Development Fund–the Competitiveness Operational Programme (1/07.07.2016, COP, Grant ID No. 1334) Phases Ⅱthe Romanian Ministry of Research, Innovation and Digitalization: Program Nucleu Grant No. PN23210105+6 种基金supported by the IOSIN Funds for Research Infrastructures of National Interest funded by the Romanian Ministry of Research, Innovation and Digitalizationsupported by Project No. ELI-RO/DFG/2023_001 ARNPhot funded by the Institute of Atomic Physics (Romania), the European Union, the Romanian Governmentthe Health Program, within the project “Medical Applications of High-Power Lasers–Dr. LASER,” SMIS Code 326475by Grant Nos. ELI-RO/RDI/2024_14 SPARC and ELI-RO/RDI/2024_8 AMAPBMBF Grant No. 05P24PF2 (Germany)the EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations (VAB-TU), Czechia under Project No. EHPCREG-2023R02-006 (Grant No. DD-23-157)Ministry of Education, Youth and Sports of the Czech Republic through e-INFRA CZ (Grant ID No. 90140)
文摘We introduce a scheme aiming at the generation of quasi-monochromatic carbon ion bunches from laser-solid interaction.The proposed scheme is an extension of the“peeler”acceleration originally proposed for proton acceleration,which involves irradiating the narrow(submicrometer)side of a tape target.This results in the generation of a surface plasma wave and the subsequent acceleration of a proton bunch with high peak energy,quasi-monochromaticity,low energy bandwidth,and low divergence by the electrostatic field induced at the target rear.Up to now,the higher-Z(e.g.,carbon)ion bunches obtained with the peeler scheme have been found to exhibit an exponentially decaying thermal-like energy spectrum.To achieve a low energy bandwidth,we place a mass-limited carbon structure at the rear of the target.Using 3D particle-in-cell simulations,we show that a quasi-monochromatic carbon bunch can indeed be obtained.With a multi-PW laser pulse,10^(8) carbon ions with peak energy~110 MeV/u and with a divergence of 20° in the vertical plane and~1° in the horizontal plane can be generated.The quasi-monochromaticity,together with the low duration of the beam and in combination with the versatility of high-power laser facilities,should make this scheme attractive for practical applications such as heavy ion cancer therapy and higher-resolution diagnostics of extreme plasma states.
基金supported by the Opening Project of State Key Laboratory of Mechanical Transmission for Advanced Equipment(No.SKLMT-MSKFKT202330)the National Natural Science Foundation of China(NSFC)(No.52575022)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_1295)。
文摘To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration decoupling algorithms,a new decoupling algorithm is proposed along with a corresponding auto-compensation algorithm.Firstly,based on Kane’s method,the dynamics model of the six-axis acceleration sensing mechanism is formed to determine the relationship between accelerations and branch forces.Then,with the trapezoidal rule,a solution algorithm for the dynamics model is developed.The virtual prototype tests show that the computation of this algorithm is five times more efficient than that of the ADAMS core algorithm.Besides,this solution algorithm is applied to the“12-6”configuration and“9-3”configuration.The results show that the efficiency of the former is nearly 3.3 times that of the latter.Finally,based on vibration theory,an auto-compensation algorithm for the solution algorithm is established.Virtual prototype tests indicate that with 40%noise interference,the auto-compensation algorithm achieves misjudgement rate and omission rate of only 4.0%and 4.5%,respectively,and the errors in the solving process converge.
基金supported by the National Natural Science Foundation of China (Grant No. 12372028)the National Key Research and Development Program of China (Grant No. 2020YFC2201101)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2022A1515011809)。
文摘The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.
基金supported by National Natural Science Foundation of China(No.11975261)。
文摘In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.
基金supported by Science and Technology Major Project of Hubei Province in China(No.2021AFB001)。
文摘In laser wakefield acceleration,injecting an external electron beam at a certain energy is a promising approach for achieving a high-quality electron beam with low energy spread and low emittance.In this paper,the process of laser wakefield acceleration with an external injection at 10 pC has been studied in simulations.A Bayesian optimization method is used to optimize the key laser and plasma parameters so that the electron beam is accelerated to the expected energy with a small emittance and energy spread growth.The effect of the rising edge of the plasma on the transverse properties of the electron beam is simulated and optimized in order to ensure that the external electron beam is injected into the plasma without significant emittance growth.Finally,a high-quality electron beam with an energy of 1.5 GeV,a normalized transverse emittance of 0.5 mm·mrad and a relative energy spread of 0.5%at 10 pC is obtained.
文摘The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.
基金co-supported by the Fundamental Research Funds for the Central Universities(No:NZ2016103)the National Natural Science Foundation of China(No: 51576096)
文摘In order to solve the aero-propulsion system acceleration optimal problem,the necessity of inlet control is discussed,and a fully new aero-propulsion system acceleration process control design including the inlet,engine,and nozzle is proposed in this paper.In the proposed propulsion system control scheme,the inlet,engine,and nozzle are simultaneously adjusted through the FSQP method.In order to implement the control scheme design,an aero-propulsion system componentlevel model is built to simulate the inlet working performance and the matching problems between the inlet and engine.Meanwhile,a stabilizing inlet control scheme is designed to solve the inlet control problems.In optimal control of the aero-propulsion system acceleration process,the inlet is an emphasized control unit in the optimal acceleration control system.Two inlet control patterns are discussed in the simulation.The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively,acceleration performance could be obviously enhanced.Acceleration objectives could be obtained with a faster acceleration time by5%.
基金Research Project No.[75-09-01] on medium-range numerical weather forecasts.
文摘Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.