The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumpti...The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues.展开更多
A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the ...A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the time-domain and frequency-domain analysis,acceleration features like the amplitude,the period and the acceleration region values are obtained.Furthermore,the accuracy of the motion classification is improved by using the k-nearest neighbor (KNN) algorithm.展开更多
文摘The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues.
基金supported by the In-shoe Triaxial Pressure Measurement (Grant No.07DZ12077)and the Shanghai Innovation Project
文摘A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the time-domain and frequency-domain analysis,acceleration features like the amplitude,the period and the acceleration region values are obtained.Furthermore,the accuracy of the motion classification is improved by using the k-nearest neighbor (KNN) algorithm.