The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could...The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.展开更多
Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer, causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter. In this study, efficie...Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer, causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter. In this study, efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated. Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR). To effectively accelerate TOC reduction in the waste layer to which compost was added, a high OFR exceeding that by natural ventilation was required. At day 65, the pH of the leachate when OFR was above 102 mol-O2/(day.m3) was lower than that when OFR was below 101 mol-Oz/(day.m3). At the same OFR, the pH of waste sample was lower than that of waste sample with compost. Although leachate neutralization could be affected by compost addition, TOC reduction in the waste layer became rather small. It is possible that humic substances in compost prevent the decomposition of TOC in MSWI residue.展开更多
The project of a 10 Me V PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to sta...The project of a 10 Me V PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.展开更多
At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wake...At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration(LWFA) scheme, multi-hundred Me V electron beams of reasonable quality are generated using 20–40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.展开更多
文摘The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.
基金the project "Guarantee of Safety and Security for Toxic Wastes in Landfills(FY 2004 to 2006)" supported by the Special Coordination Funds for Promoting Science and Technology of the Ministry of Education,Culture,Sports,Science andTechnology,Japan
文摘Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer, causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter. In this study, efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated. Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR). To effectively accelerate TOC reduction in the waste layer to which compost was added, a high OFR exceeding that by natural ventilation was required. At day 65, the pH of the leachate when OFR was above 102 mol-O2/(day.m3) was lower than that when OFR was below 101 mol-Oz/(day.m3). At the same OFR, the pH of waste sample was lower than that of waste sample with compost. Although leachate neutralization could be affected by compost addition, TOC reduction in the waste layer became rather small. It is possible that humic substances in compost prevent the decomposition of TOC in MSWI residue.
文摘The project of a 10 Me V PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.
基金Supported by 973 National Basic Research Program of China(2013CBA01504)Natural Science Foundation of China NSFC(11121504,11334013,11175119,11374209)
文摘At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration(LWFA) scheme, multi-hundred Me V electron beams of reasonable quality are generated using 20–40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.