In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson...In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.展开更多
Based on the density matrix approach and iterative procedure, a detailed procedure for the calculation of the linear and nonlinear intersubband optical absorption coefficients is given in wurtzite GaN-based coupling q...Based on the density matrix approach and iterative procedure, a detailed procedure for the calculation of the linear and nonlinear intersubband optical absorption coefficients is given in wurtzite GaN-based coupling quantum wells (CQWs). The simple analytical formulas for electronic eigenstates and the linear and nonlinear optical absorption coefficients in the systems are also deduced. Numerical result on a typical A1GaN/GaN CQW shows that, the linear and nonlinear optical absorption coefficients sensitively depend on the structural parameters of the CQW system as well as the incident optics beam intensity.展开更多
Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacanc...Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacancy are reduced, while those of Fe- and Ni-doped ZnO are raised. This is consistent with the previous experimental results. The effects of oxygen vacancy on the absorptions of the doped systems were predicted. When a neutral oxygen vacancy is introduced, all doping elements decrease the absorptions. On the contrary, the absorptions of the doped systems are enhanced if the vacancies are charged. Degraded absorptions can be obtained by increasing the permeability. However, the appearance of anti-bonding states may cause enhanced absorptions. In the current study, Mn-doped ZnO is the most suitable for use as low infrared absorption materials.展开更多
An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L...An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions.The results are presented as a function of the incident photon energy for the different values of the confinement strength.These results show the effects of the quantum size and the impurity on the optical absorption coefficient of a donorimpurity quantum dot.展开更多
Observing a telluric standard star for correcting the telluric absorption lines of spectrum will take a significant amount of precious telescope time,especially in the long-term spectral monitoring project.Beyond that...Observing a telluric standard star for correcting the telluric absorption lines of spectrum will take a significant amount of precious telescope time,especially in the long-term spectral monitoring project.Beyond that,it is difficult to select a suitable telluric standard star near in both time and airmass to the scientific object.In this paper,we present a method of correcting the telluric absorption lines by combining the advantages of long slit spectroscopy.By rotating the slit,we observed the scientific object and a nearby comparison star in one exposure,so that the spectra of both objects should have the same telluric transmission spectrum.The telluric transmission spectrum was constructed by dividing the observed spectrum of the comparison star by its stellar template,and was used to correct the telluric absorption lines of the scientific object.Using the long slit spectrograph of the Lijiang 2.4-meter telescope,we designed a long-term spectroscopic observation strategy,and finished a four-year spectroscopic monitoring for a pair of objects(an active galactic nucleus and a non-varying comparison star).We applied this method to correct the telluric absorption lines of the long-term monitored spectra by the Lijiang 2.4-meter telescope,and investigated the variation of the telluric absorptions at Lijiang Observatory.We found that the telluric absorption transparency is mainly modulated by the seasonal variability of the relative humidity,airmass and seeing.Using the scatter of the [O Ⅲ] λ5007 fluxes emitted from the narrow-line region of active galactic nuclei as an indicator,we found that the correction accuracy of the telluric absorption lines is 1%.展开更多
In this paper there are established the global existence and finite time blow-up results of nonnegative solution for the following parabolic system ut = △u + v^P(x0, t) - au^τ, x ∈ Ω, t 〉 0, △u + v^P(x0, t...In this paper there are established the global existence and finite time blow-up results of nonnegative solution for the following parabolic system ut = △u + v^P(x0, t) - au^τ, x ∈ Ω, t 〉 0, △u + v^P(x0, t) - bu^τ, x ∈ Ω, t 〉 0 subject to homogeneous Dirichlet conditions and nonnegative initial data, where x0 ∈ Ω is a fixed point, p, q, r, s ≥ 1 and a, b 〉 0 are constants. In the situation when nonnegative solution (u, v) of the above problem blows up in finite time, it is showed that the blow-up is global and this differs from the local sources case. Moreover, for the special case r = s = 1, lim t→T*(T*-t)^p+1/pq-1u(x,t)=(p+1)^1/pq-1(q+1)^p/pq-1(pq-1)^-p+1/pq-1, lim t→T*(T*-t)^q+1/pq-1u(x,t)=(p+1)^1/pq-1(q+1)^p/pq-1(pq-1)^-p+1/pq-1 are obtained uniformly on compact subsets of/2, where T* is the blow-up time.展开更多
Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with diffe...Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with different frequencies cause the distinct modulations of the intersubband absorptions. The terahertz-indueed sideband and Autler-Towns splitting in the absorption spectrum are obtained, respectively for the terahertz-photon energy below and close to the transition energy between the ground and first excited state.展开更多
Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in...Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Sorer effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results.展开更多
The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer c...The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.展开更多
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i...The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,wi...Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.展开更多
Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This re...Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures ca...Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents.Among these co-intercalation compounds,Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe_(2)O_(4)/FeNi_(3)@EG during the annealing process.The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals.The reflection values of−39.1 dB at 6.95 GHz and−25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%.This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids,which may contribute to the development of microwave absorption materials with superior performances.展开更多
Four new 1,8-naphthyridine derivatives were synthesized by reacting the parent molecules with aldehydes and characterized. Two of the compounds have completely new and unusual skeletons, and display red-fluorescence e...Four new 1,8-naphthyridine derivatives were synthesized by reacting the parent molecules with aldehydes and characterized. Two of the compounds have completely new and unusual skeletons, and display red-fluorescence emissions and two-photon absorption. Their structures were determined using MS, 1D and 2D NMR, and density functional theory calculations. The structural investigations of 2-methyl-l,8-naphthyridine hydrochloride and hydrobromide showed that abundant hydrogen-bonds and π-π interactions lead to extended networks.展开更多
We investigate the influence of magnetic field on the linear and nonlinear optical absorptions in a parabolic quantum dot(QD) through electron-LO-phonon interaction by using the Lee-Low-Pines-Huybrecht variational c...We investigate the influence of magnetic field on the linear and nonlinear optical absorptions in a parabolic quantum dot(QD) through electron-LO-phonon interaction by using the Lee-Low-Pines-Huybrecht variational calculation for all coupling strengths.We apply our calculations to GaAs which is a good candidate in Ⅲ-Ⅴgroup semiconductors.We find that all the absorption spectra are strongly affected by the electron-LO-phonon interaction,the applied magnetic field,and the Coulomb binding potential.Furthermore,due to the Zeeman splitting,the response of all the absorption values in transition(+1→0) and(-1→0) closely depends on the magnetic field increasing.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
基金Supported by the Deanship of Scientific Research of University of Dammam under Grant No 2015134
文摘In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.
基金supported by State Key Basic Research Program of China under Grant No 2006CB921607the Natural Science Foundation of Guangzhou Education Bureau under Grant No.2060
文摘Based on the density matrix approach and iterative procedure, a detailed procedure for the calculation of the linear and nonlinear intersubband optical absorption coefficients is given in wurtzite GaN-based coupling quantum wells (CQWs). The simple analytical formulas for electronic eigenstates and the linear and nonlinear optical absorption coefficients in the systems are also deduced. Numerical result on a typical A1GaN/GaN CQW shows that, the linear and nonlinear optical absorption coefficients sensitively depend on the structural parameters of the CQW system as well as the incident optics beam intensity.
基金financial supported by the Scientific and Technological Program of Shaanxi Province(No.2009K06_03)
文摘Using first-principle theory, the infrared absorptions of transition metal (Mn, Fe, Co, Ni)-doped ZnO were investigated. The results indicate that the absorptions of Mn- and Co-incorporated ZnO without oxygen vacancy are reduced, while those of Fe- and Ni-doped ZnO are raised. This is consistent with the previous experimental results. The effects of oxygen vacancy on the absorptions of the doped systems were predicted. When a neutral oxygen vacancy is introduced, all doping elements decrease the absorptions. On the contrary, the absorptions of the doped systems are enhanced if the vacancies are charged. Degraded absorptions can be obtained by increasing the permeability. However, the appearance of anti-bonding states may cause enhanced absorptions. In the current study, Mn-doped ZnO is the most suitable for use as low infrared absorption materials.
基金Supported by National Natural Science Foundation of China under Grant No.10775035
文摘An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions.The results are presented as a function of the incident photon energy for the different values of the confinement strength.These results show the effects of the quantum size and the impurity on the optical absorption coefficient of a donorimpurity quantum dot.
基金supported by the National Natural Science Foundation of China(NSFCGrant Nos.11991051,12073068,11703077,and 11803087)+2 种基金financial support from the Yunnan Province Foundation(202001AT070069)the Light of West China Program provided by Chinese Academy of Sciences(Y7XB016001)financial support from the Light of West China Program provided by Chinese Academy of Sciences(Y8XB018001)。
文摘Observing a telluric standard star for correcting the telluric absorption lines of spectrum will take a significant amount of precious telescope time,especially in the long-term spectral monitoring project.Beyond that,it is difficult to select a suitable telluric standard star near in both time and airmass to the scientific object.In this paper,we present a method of correcting the telluric absorption lines by combining the advantages of long slit spectroscopy.By rotating the slit,we observed the scientific object and a nearby comparison star in one exposure,so that the spectra of both objects should have the same telluric transmission spectrum.The telluric transmission spectrum was constructed by dividing the observed spectrum of the comparison star by its stellar template,and was used to correct the telluric absorption lines of the scientific object.Using the long slit spectrograph of the Lijiang 2.4-meter telescope,we designed a long-term spectroscopic observation strategy,and finished a four-year spectroscopic monitoring for a pair of objects(an active galactic nucleus and a non-varying comparison star).We applied this method to correct the telluric absorption lines of the long-term monitored spectra by the Lijiang 2.4-meter telescope,and investigated the variation of the telluric absorptions at Lijiang Observatory.We found that the telluric absorption transparency is mainly modulated by the seasonal variability of the relative humidity,airmass and seeing.Using the scatter of the [O Ⅲ] λ5007 fluxes emitted from the narrow-line region of active galactic nuclei as an indicator,we found that the correction accuracy of the telluric absorption lines is 1%.
基金This study is supported partially by the research program of natural science of universities in Jiangsu province(05KJB110144 and 05KJB110063)the natural science foundation of Yancheng normal institute.
文摘In this paper there are established the global existence and finite time blow-up results of nonnegative solution for the following parabolic system ut = △u + v^P(x0, t) - au^τ, x ∈ Ω, t 〉 0, △u + v^P(x0, t) - bu^τ, x ∈ Ω, t 〉 0 subject to homogeneous Dirichlet conditions and nonnegative initial data, where x0 ∈ Ω is a fixed point, p, q, r, s ≥ 1 and a, b 〉 0 are constants. In the situation when nonnegative solution (u, v) of the above problem blows up in finite time, it is showed that the blow-up is global and this differs from the local sources case. Moreover, for the special case r = s = 1, lim t→T*(T*-t)^p+1/pq-1u(x,t)=(p+1)^1/pq-1(q+1)^p/pq-1(pq-1)^-p+1/pq-1, lim t→T*(T*-t)^q+1/pq-1u(x,t)=(p+1)^1/pq-1(q+1)^p/pq-1(pq-1)^-p+1/pq-1 are obtained uniformly on compact subsets of/2, where T* is the blow-up time.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant Nos 60425415 and 605280058), the Major Program of the National Natural Science Foundation of China (Grant No 10390162), and the Shanghai Municipal Commission of Science and Technology of China (Grant Nos 03JC14082 and 05XD14020).
文摘Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with different frequencies cause the distinct modulations of the intersubband absorptions. The terahertz-indueed sideband and Autler-Towns splitting in the absorption spectrum are obtained, respectively for the terahertz-photon energy below and close to the transition energy between the ground and first excited state.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10104007)the Program for New Century Excellent Talents in University, China (Grant No. NCET-04-0333)the Excellent Youth Fund of Heilongjiang Province,China (Grant No. JC-04-04)
文摘Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Sorer effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results.
文摘The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.
基金Supported by the National Natural Science Foundation of China(22378181).
文摘The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金financially supported by the Hainan Province Science and Technology Special Fund(Grant no:ZDYF2024XDNY187).
文摘Background:Excessive use of inorganic trace minerals(ITMs)in swine production leads to high fecal mineral excretion and environmental risks,while most studies on organic trace minerals(OTMs)focus on single elements,with limited data on the synergistic effects and molecular mechanisms of combined OTMs(Fe,Cu,Mn,Zn)in growing-finishing pigs.Methods:This study aimed to investigate the effects of graded levels of micromineral proteinates(combined OTMs)on growth performance,mineral metabolism,and mRNA expression of mineral regulatory proteins.A total of 360 crossbred Duroc×Landrace×Large White pigs(initial body weight 47.1±4.8 kg)were randomly assigned to 6 dietary treatments:basal diet without microminerals(CON),basal diet with ITMs at commercially recommended levels(IT),and basal diets with 15%(OT 15%),25%(OT 25%),35%(OT 35%)commercially recommended levels(CRL)of combined micromineral proteinates.After a 70-day feeding trial,samples were analyzed using ICP-OES,ELISA,and RT-qPCR.Results:Results showed that reduced levels(15-35%CRL)of micromineral proteinates did not significantly affect average daily gain,average daily feed intake,or feed conversion ratio(gain-to-feed ratio)compared to IT(P>0.05),but significantly increased plasma Cu(1.73-1.83μg/mL)and Zn(1.72-1.97μg/mL)concentrations(P<0.05)and elevated activities of Cu/Zn-superoxide dismutase(32.9-35.9 U/L)and manganese superoxide dismutase(20.5-24.1 U/L)compared to CON(P<0.05),with no significant differences from IT(P>0.05).Fecal excretion of Fe,Cu,Mn,and Zn was significantly reduced by 35-50%in OT 15%-OT 35%groups compared to IT(P<0.05).OT 25%group exhibited the highest apparent absorptivity of Fe(38.5%),Cu(27.8%),and Zn(42.4%)(P<0.05),which was associated with significantly regulated mRNA expression of mineral regulatory proteins:upregulated DMT1,FPN1,ZIP4,and MT1A in the duodenum,and modulated HAMP,ATP7B,ZIP14,and ZnT1 in the liver(P<0.05).Conclusion:In conclusion,dietary supplementation with 25%CRL or less of combined micromineral proteinates can fully meet the nutritional needs of growing-finishing pigs,improve mineral absorptivity,and reduce fecal mineral excretion by regulating intestinal and hepatic mineral transport and homeostatic proteins,providing a sustainable alternative to high-dose ITMs.
文摘Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金the financial support of the National Natural Science Foundation of China(No.51573149)the Key R&D Projects in Sichuan Province(Nos.2020ZDZX0005 and 2020ZDZX0008).
文摘Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents.Among these co-intercalation compounds,Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe_(2)O_(4)/FeNi_(3)@EG during the annealing process.The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals.The reflection values of−39.1 dB at 6.95 GHz and−25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%.This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids,which may contribute to the development of microwave absorption materials with superior performances.
文摘Four new 1,8-naphthyridine derivatives were synthesized by reacting the parent molecules with aldehydes and characterized. Two of the compounds have completely new and unusual skeletons, and display red-fluorescence emissions and two-photon absorption. Their structures were determined using MS, 1D and 2D NMR, and density functional theory calculations. The structural investigations of 2-methyl-l,8-naphthyridine hydrochloride and hydrobromide showed that abundant hydrogen-bonds and π-π interactions lead to extended networks.
文摘We investigate the influence of magnetic field on the linear and nonlinear optical absorptions in a parabolic quantum dot(QD) through electron-LO-phonon interaction by using the Lee-Low-Pines-Huybrecht variational calculation for all coupling strengths.We apply our calculations to GaAs which is a good candidate in Ⅲ-Ⅴgroup semiconductors.We find that all the absorption spectra are strongly affected by the electron-LO-phonon interaction,the applied magnetic field,and the Coulomb binding potential.Furthermore,due to the Zeeman splitting,the response of all the absorption values in transition(+1→0) and(-1→0) closely depends on the magnetic field increasing.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.