The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated...The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.展开更多
A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a l...A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.展开更多
The transport of hot electrons in inertial confinement fusion(ICF)is integrated issue due to the coupling of hydrodynamic evolution and many physical processes.A hot electron transport code is developed and coupled wi...The transport of hot electrons in inertial confinement fusion(ICF)is integrated issue due to the coupling of hydrodynamic evolution and many physical processes.A hot electron transport code is developed and coupled with the radiation hydrodynamic code MULTI1D in this study.Using the code,the slowing-down process and ablation process of the hot electron beam are simulated.The ablation pressure scaling law of hot electron beam is confirmed in our simulations.The hot electron transport is simulated in the radiation-ablated plasmas relevant to indirect-drive ICF,where the spatial profile of hot electron energy deposition is presented around the shock compressed region.It is shown that the hot electron can prominently increase the total ablation pressure in the early phase of radiation-ablated plasma.So,our study suggests that a potential-driven symmetric mechanism may occur under the irradiation of asymmetric hot electron beam.The possible degradation from the hot electron transport and preheating is also discussed.展开更多
AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocell...AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines.Ten mice underwent HIFU ablation,and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation.Sixty normal mice were randomly divided into HIFU vaccine,tumor vaccine and control groups.These mice were immunized with HIFU-generated vaccine,tumor-generated vaccine,and saline,respectively.In addition,20 mice bearing H22 tumors were successfully treated with HIFU ablation. The protective immunity of the vaccinated mice was investigated before and after a subsequent H22 tumor challenge.Using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay,the cytotoxicity of splenic lymphocytes co-cultured with H22 cells wasdetermined in vitro before the tumor challenge,and tumor volume and survival were measured in vivo after the challenge in each group.The mechanism was also explored by loading the vaccines with bone marrowderived dendritic cells(DCs). RESULTS:Compared to the control,HIFU therapy, tumor-generated and HIFU-generated vaccines significantly increased cytolytic activity against H22 cells in the splenocytes of the vaccinated mice(P<0.001). The tumor volume was significantly smaller in the HIFU vaccine group than in the tumor vaccine group(P <0.05)and control group(P<0.01).However,there was no tumor growth after H22 rechallenge in the HIFU therapy group.Forty-eight-day survival rate was 100%in mice in the HIFU therapy group,30%in both the HIFU vaccine and tumor vaccine groups,and 20% in the control group,indicating that the HIFU-treated mice displayed significantly longer survival than the vaccinated mice in the remaining three groups(P< 0.001).After bone marrow-derived DCs were incubated with HIFU-generated and tumor-generated vaccines, the number of mature DCs expressing MHC-Ⅱ + ,CD80 + and CD86 + molecules was significantly increased,and interleukin-12 and interferon-γlevels were significantly higher in the supernatants when compared with immature DCs incubated with mouse serum(P<0.001). However,no differences of the number of mature DCs and cytokine levels were observed between the HIFU- generated and tumor-generated vaccines(P>0.05). CONCLUSION:Tumor debris remaining after HIFU can improve tumor immunogenicity.This debris releases tumor antigens as an effective vaccine to develop host antitumor immune response after HIFU ablation.展开更多
Two dimensional(2D)materials are promising gas sensing materials,but the most of them need to be heated to show promising sensing performance.Sensing structures with high sensing performance at room-temperature are ur...Two dimensional(2D)materials are promising gas sensing materials,but the most of them need to be heated to show promising sensing performance.Sensing structures with high sensing performance at room-temperature are urgent.Here,another 2D material,violet phosphorus(VP)nanoflake is investigated as gas sensing material.The VP nanoflakes have been effectively ablated to have layers of 1–5 layers by laser ablation in glycol.The VP nanoflakes are combined with graphene to form VP/G heterostructuresbased NO sensor.An ultra-high gauge factor of 3×10^(7)for ppb-level sensing and high resistance response of 59.21%with ultra-short recovery time of 6s for ppm-level sensing have been obtained.The sensing mechanism is also analysed by density functional theory(DFT)calculations.The adsorption energy of VP/G is calculated to be-0.788 e V,resulting in electrons migration from P to N to form a P-N bond in the gap between VP and graphene sheet.This work provides a facile approach to ablate VP for mass production.The as-produced structures have also provided potential gas sensors with ultrasensitive performance as ppb-level room-temperature sensors.展开更多
The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B ...The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals.展开更多
Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such...Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such as electrical, morphological, and structural modifications. Thomson parabola technique is used to calculate the energy of these metallic ions whereas the electrical conductivity is calculated with the help of Four-point probe. Interestingly circular tracks forming chain like damage trails are produced via these energetic ions which are carefully examined by optical microscopy. It is observed that excitation, ionization, and cascade collisions are responsible for surface modifications of irradiated samples. Four-point probe analysis revealed that the electrical conductivity of substrate has reduced with increasing trend of atomic number of irradiated metallic ions (A1, Ti, Cu, and Au). The x-ray diffraction analysis elucidated the crystallographic changes leading to reduction of grain size of N-type silicon substrate, which is also associated with the metallic ions used. The decreasing trend of conductivity and grain size is due to thermal stresses, scattering effect, structural imperfections, and non-uniform conduction of energy absorbed by substrate atoms after the ion irradiation.展开更多
Laser ablated high temperature superconducting and related thin films are investigated with a microscopical point of view.The microstructure and microchemistry of three thin films(Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O and Sr-Ca...Laser ablated high temperature superconducting and related thin films are investigated with a microscopical point of view.The microstructure and microchemistry of three thin films(Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O and Sr-Ca-Cu-O)are demonstrated as examples of laser ablation products.展开更多
Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation s...Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.展开更多
Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well a...Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.展开更多
Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-sk...Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa^-1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.展开更多
Interleukin 12(IL-12)and/or interleukin 18(IL-18)gene ablated mice were applied for the investigation of the tissue expression of interferon γ(IFN-γ).For IL-12^(-/-),IL-18^(-/-),IL-12^(-/-)/18^(-/-) and wt mice,repr...Interleukin 12(IL-12)and/or interleukin 18(IL-18)gene ablated mice were applied for the investigation of the tissue expression of interferon γ(IFN-γ).For IL-12^(-/-),IL-18^(-/-),IL-12^(-/-)/18^(-/-) and wt mice,reproductive performance were recorded and IFN-γ concentrations in heart,lung,liver,spleen,kidney and serum were quantified by ELISA. There were no significant differences of IFN-γ in heart,lung and kidney between 4 strains although control group was higher.It was observed that for IL-12^(-/-) mice,compared with other 3 groups,IFN-γ in liver and spleen were decreased(p<0.05)and reproductive performance appeared to be impaired.Serum IFN-γ level of IL-12^(-/-)/18^(-/-) mice was significantly higher(p<0.05).It was showed that IFN-γ productions under the normal condition were independent upon IL-12 and IL-18,its expressions in various tissues were different,and optimal IFN-γ is necessary for the normal growth and development of mammals.This study is helpful for clinical cytokines therapy.Cellular & Molecular Immunology.2005;2(1):68-72.展开更多
BACKGROUND Duodenal mucosal ablation(DMA)using irreversible electroporation(IRE)with a glucagon-like peptide-1 receptor agonist has been clinically shown to reduce liver lipid deposition in non-alcoholic fatty liver d...BACKGROUND Duodenal mucosal ablation(DMA)using irreversible electroporation(IRE)with a glucagon-like peptide-1 receptor agonist has been clinically shown to reduce liver lipid deposition in non-alcoholic fatty liver disease(NAFLD).However,the specific metabolic contributions of DMA using IRE in NAFLD remain unclear.AIM To assess the feasibility and effectiveness of DMA using IRE in NAFLD rat models.METHODS Seven-week-old male Sprague-Dawley rats underwent DMA using IRE after 8 weeks on a high-fat diet.Two weeks post-treatment,duodenal and liver tissues and blood samples were collected.We evaluated differences in the duodenal wall structure,liver lipid deposition,enteroendocrine,claudin,and zonula ocludens-1 in the duodenal mucosa.RESULTS DMA using IRE could be safely performed in rats with NAFLD without duodenal bleeding,perforation,or stenosis.The duodenum healed well 2 weeks after DMA and was characterized by slimmer villi,narrower and shallower crypts,and thicker myenterons compared with the sham-control setting.Liver lipid deposition was reduced and serum lipid index parameters were considerably improved in the DMA setting.However,these improvements were independent of food intake and weight loss.In addition,enteroendocrine parameters,such as claudin,and zonula ocludens-1 levels in the duodenal mucosa,differed between the different settings in the DMA group.CONCLUSION By altering enteroendocrine and duodenal permeability,simple DMA using IRE ameliorated liver lipid deposition and improved serum lipid parameters in NAFLD rats.展开更多
Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,...Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.展开更多
This editorial comments on a study by Zuo et al.The focus is on the efficacy of he-patic arterial infusion chemotherapy combined with camrelizumab and apatinib(the TRIPLET regimen),alongside microwave ablation therapy...This editorial comments on a study by Zuo et al.The focus is on the efficacy of he-patic arterial infusion chemotherapy combined with camrelizumab and apatinib(the TRIPLET regimen),alongside microwave ablation therapy,in treating advanced hepatocellular carcinoma(HCC).The potential application of this combination therapy for patients with advanced HCC is evaluated.展开更多
To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composite...To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.展开更多
Ultrasound-guided percutaneous thermal ablation has gained popularity as treatment for malignant hepatic tumors.It was first introduced as ablation therapy for hepatocellular carcinoma and cirrhosis comorbidity.Recent...Ultrasound-guided percutaneous thermal ablation has gained popularity as treatment for malignant hepatic tumors.It was first introduced as ablation therapy for hepatocellular carcinoma and cirrhosis comorbidity.Recently,this technique has also been used in the treatment of intrahepatic cholangiocarcinoma for patients who are not eligible for surgical resection.There are several types of thermal ablation techniques.Radiofrequency ablation and microwave ablation are two common methods that induce necrosis of the lesions.Irreversible electroporation is a relatively new non-thermal technique and is suitable in cases where thermal ablation would be ineffective or dangerous(e.g.,malignant tumors close to vascular or biliary structures).Irreversible electroporation can induce tumoral necrosis without damage to vascular and biliary structures.The aim of this minireview was to describe the safety,efficacy,and clinical indications of these techniques in the treatment of patients with intrahepatic cholangiocarcinoma who are ineligible for surgery.展开更多
Cryotherapy is a treatment modality that uses extreme cold to destroy unwanted tissue through both immediate and delayed cellular injury.This therapy is increasingly being adopted across various medical specialties du...Cryotherapy is a treatment modality that uses extreme cold to destroy unwanted tissue through both immediate and delayed cellular injury.This therapy is increasingly being adopted across various medical specialties due to its minimally invasive nature and technological advancements that have been made.In the esophagus,cryotherapy is particularly utilized for the management of Barrett esophagus.It has been demonstrated to be effective and safe with potential benefits,such as a reduction in pain,over radiofrequency ablation.Additionally,it might offer a valuable alternative for patients unresponsive to radiofrequency ablation.Cryotherapy is applied for other conditions as well,including esophageal squamous cell neoplasia and malignant dysphagia.More research is needed to gain understanding of the utility in these conditions.Interestingly,cryotherapy has shown the ability to enhance the host’s immune response in reaction to antigens left in situ after treatment.While preclinical data have demonstrated promising results,the immune response is often insufficient to induce tumor regression in the clinical setting.Therefore,there is growing interest in the combination of cryotherapy and immunotherapy where ablation creates an antigen depot,and the immune system is subsequently stimulated.This combination holds promise for the future and potentially opens new doors for a breakthrough in cancer treatment.展开更多
Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablatio...Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablation and cryoablation and highlights its clinical efficacy,safety,and technical considerations.MWA offers significant benefits,including higher intratumoral temperatures,larger ablation zones,and reduced susceptibility to the heat-sink effect,which make it particularly suitable for tumors near large blood vessels.This review details the patient selection criteria,procedural approaches,and the use of advanced imaging techniques to improve the precision and effectiveness of MWA.Clinical outcomes indicate that MWA achieves high rates of complete tumor ablation and long-term survival with a favorable safety profile.This review is significant because it provides updated insights into the expanding role of MWA in treating unresectable CRLM and its potential as an alternative to surgical resection for resectable tumors.By summarizing recent studies and clinical trials,this review highlights the comparative effectiveness,safety,and integration with systemic therapies of MWA.In conclusion,MWA is a promising treatment option for CRLM and offers outcomes comparable to or better than those of other ablative techniques.Future research should focus on optimizing technical parameters,integrating MWA with systemic therapies,and conducting large-scale randomized controlled trials to establish standardized treatment protocols.Advancing our understanding of MWA will enhance its application and improve long-term survival and quality of life for patients with CRLM.展开更多
Objective: To evaluate the efficacy of endovenous radiofrequency ablation (RFA) and laser ablation (EVLA) in the treatment of superficial varicose veins of the lower extremities. Methods: Seventy-eight patients with s...Objective: To evaluate the efficacy of endovenous radiofrequency ablation (RFA) and laser ablation (EVLA) in the treatment of superficial varicose veins of the lower extremities. Methods: Seventy-eight patients with superficial varicose veins treated at a hospital between April 2022 and May 2023 were selected and divided into a radiofrequency ablation group (RFA group;39 cases) and a laser ablation group (EVLA group;39 cases) based on the treatment method. Operation time, postoperative recovery duration, venous clinical severity score (VCSS) changes, complication rates, closure rates, and recurrence rates were compared between the groups at 1 month, 3 months, and 12 months postoperatively. The postoperative therapeutic outcomes were comprehensively evaluated. Results: No significant differences in age, gender, disease grade, or disease course were observed between the groups (P > 0.05). The superficial varicose vein closure rate was 100% in both groups at 1 and 3 months postoperatively. At 12 months, the closure rate was 94.87% in the RFA group and 97.43% in the EVLA group, with no statistically significant difference (P > 0.05). No significant differences were observed in VCSS changes or complication incidence between the groups (P > 0.05). Conclusion: Radiofrequency ablation and laser ablation demonstrate comparable efficacy and safety in the treatment of superficial varicose veins of the lower extremities.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CB612305)the Natural Science Foundation of Hebei Province,China(Grant Nos.E2012201035 and E2011201134)
文摘The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2015201166)the Natural Science Foundation of Hebei University,China(No.2013-252)
文摘A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050600)the DCI joint team。
文摘The transport of hot electrons in inertial confinement fusion(ICF)is integrated issue due to the coupling of hydrodynamic evolution and many physical processes.A hot electron transport code is developed and coupled with the radiation hydrodynamic code MULTI1D in this study.Using the code,the slowing-down process and ablation process of the hot electron beam are simulated.The ablation pressure scaling law of hot electron beam is confirmed in our simulations.The hot electron transport is simulated in the radiation-ablated plasmas relevant to indirect-drive ICF,where the spatial profile of hot electron energy deposition is presented around the shock compressed region.It is shown that the hot electron can prominently increase the total ablation pressure in the early phase of radiation-ablated plasma.So,our study suggests that a potential-driven symmetric mechanism may occur under the irradiation of asymmetric hot electron beam.The possible degradation from the hot electron transport and preheating is also discussed.
基金Supported by The Foundation of Ministry of Education of China,No.IRT0454
文摘AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines.Ten mice underwent HIFU ablation,and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation.Sixty normal mice were randomly divided into HIFU vaccine,tumor vaccine and control groups.These mice were immunized with HIFU-generated vaccine,tumor-generated vaccine,and saline,respectively.In addition,20 mice bearing H22 tumors were successfully treated with HIFU ablation. The protective immunity of the vaccinated mice was investigated before and after a subsequent H22 tumor challenge.Using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay,the cytotoxicity of splenic lymphocytes co-cultured with H22 cells wasdetermined in vitro before the tumor challenge,and tumor volume and survival were measured in vivo after the challenge in each group.The mechanism was also explored by loading the vaccines with bone marrowderived dendritic cells(DCs). RESULTS:Compared to the control,HIFU therapy, tumor-generated and HIFU-generated vaccines significantly increased cytolytic activity against H22 cells in the splenocytes of the vaccinated mice(P<0.001). The tumor volume was significantly smaller in the HIFU vaccine group than in the tumor vaccine group(P <0.05)and control group(P<0.01).However,there was no tumor growth after H22 rechallenge in the HIFU therapy group.Forty-eight-day survival rate was 100%in mice in the HIFU therapy group,30%in both the HIFU vaccine and tumor vaccine groups,and 20% in the control group,indicating that the HIFU-treated mice displayed significantly longer survival than the vaccinated mice in the remaining three groups(P< 0.001).After bone marrow-derived DCs were incubated with HIFU-generated and tumor-generated vaccines, the number of mature DCs expressing MHC-Ⅱ + ,CD80 + and CD86 + molecules was significantly increased,and interleukin-12 and interferon-γlevels were significantly higher in the supernatants when compared with immature DCs incubated with mouse serum(P<0.001). However,no differences of the number of mature DCs and cytokine levels were observed between the HIFU- generated and tumor-generated vaccines(P>0.05). CONCLUSION:Tumor debris remaining after HIFU can improve tumor immunogenicity.This debris releases tumor antigens as an effective vaccine to develop host antitumor immune response after HIFU ablation.
基金the funding support by National Natural Science Foundation of China(Nos.61705125,22175136)Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(No.2022GXYSOF15)。
文摘Two dimensional(2D)materials are promising gas sensing materials,but the most of them need to be heated to show promising sensing performance.Sensing structures with high sensing performance at room-temperature are urgent.Here,another 2D material,violet phosphorus(VP)nanoflake is investigated as gas sensing material.The VP nanoflakes have been effectively ablated to have layers of 1–5 layers by laser ablation in glycol.The VP nanoflakes are combined with graphene to form VP/G heterostructuresbased NO sensor.An ultra-high gauge factor of 3×10^(7)for ppb-level sensing and high resistance response of 59.21%with ultra-short recovery time of 6s for ppm-level sensing have been obtained.The sensing mechanism is also analysed by density functional theory(DFT)calculations.The adsorption energy of VP/G is calculated to be-0.788 e V,resulting in electrons migration from P to N to form a P-N bond in the gap between VP and graphene sheet.This work provides a facile approach to ablate VP for mass production.The as-produced structures have also provided potential gas sensors with ultrasensitive performance as ppb-level room-temperature sensors.
基金Supported by the National Natural Science Foundation of China( No.2 0 0 730 4 2 )
文摘The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals.
文摘Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such as electrical, morphological, and structural modifications. Thomson parabola technique is used to calculate the energy of these metallic ions whereas the electrical conductivity is calculated with the help of Four-point probe. Interestingly circular tracks forming chain like damage trails are produced via these energetic ions which are carefully examined by optical microscopy. It is observed that excitation, ionization, and cascade collisions are responsible for surface modifications of irradiated samples. Four-point probe analysis revealed that the electrical conductivity of substrate has reduced with increasing trend of atomic number of irradiated metallic ions (A1, Ti, Cu, and Au). The x-ray diffraction analysis elucidated the crystallographic changes leading to reduction of grain size of N-type silicon substrate, which is also associated with the metallic ions used. The decreasing trend of conductivity and grain size is due to thermal stresses, scattering effect, structural imperfections, and non-uniform conduction of energy absorbed by substrate atoms after the ion irradiation.
文摘Laser ablated high temperature superconducting and related thin films are investigated with a microscopical point of view.The microstructure and microchemistry of three thin films(Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O and Sr-Ca-Cu-O)are demonstrated as examples of laser ablation products.
基金supported by the National Natural Science Foundation of China (Grant No. 60978014)the Natural Science Foundation of Jilin Province (Grant No. 20090523)the Educational Commission of Jilin Province (Grant No. [2008]297)
文摘Thermal characteristics of tightly-contacted copper-gold double-layer thin film target under ablation of femtosec- ond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper-gold film with different maximal electron temperature of 1.15 x 103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold-copper interface is only about 0.04×103 K at the same time scale. It is also found that electron-lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.
基金Funded by National Natural Science Foundation of China(Nos.51272195,51521001)111 project(No.B13035)+1 种基金Hubei Provincial National Natural Science Foundation(No.2015CFB724)Fundamental Research Funds for the Central Universities(Nos.2013-ZD-4,2014-KF-3)
文摘Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
文摘Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa^-1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4,000 compression-releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.
文摘Interleukin 12(IL-12)and/or interleukin 18(IL-18)gene ablated mice were applied for the investigation of the tissue expression of interferon γ(IFN-γ).For IL-12^(-/-),IL-18^(-/-),IL-12^(-/-)/18^(-/-) and wt mice,reproductive performance were recorded and IFN-γ concentrations in heart,lung,liver,spleen,kidney and serum were quantified by ELISA. There were no significant differences of IFN-γ in heart,lung and kidney between 4 strains although control group was higher.It was observed that for IL-12^(-/-) mice,compared with other 3 groups,IFN-γ in liver and spleen were decreased(p<0.05)and reproductive performance appeared to be impaired.Serum IFN-γ level of IL-12^(-/-)/18^(-/-) mice was significantly higher(p<0.05).It was showed that IFN-γ productions under the normal condition were independent upon IL-12 and IL-18,its expressions in various tissues were different,and optimal IFN-γ is necessary for the normal growth and development of mammals.This study is helpful for clinical cytokines therapy.Cellular & Molecular Immunology.2005;2(1):68-72.
基金Supported by the National Key Research and Development Program,No.2023YFF0713700 and No.2023YFF0713705Common Technology R&D Platform of Shaanxi Province,No.2023GXJS-01-1-2the Cyrus Tang Foundation Chung Ying Young Scholars Program.
文摘BACKGROUND Duodenal mucosal ablation(DMA)using irreversible electroporation(IRE)with a glucagon-like peptide-1 receptor agonist has been clinically shown to reduce liver lipid deposition in non-alcoholic fatty liver disease(NAFLD).However,the specific metabolic contributions of DMA using IRE in NAFLD remain unclear.AIM To assess the feasibility and effectiveness of DMA using IRE in NAFLD rat models.METHODS Seven-week-old male Sprague-Dawley rats underwent DMA using IRE after 8 weeks on a high-fat diet.Two weeks post-treatment,duodenal and liver tissues and blood samples were collected.We evaluated differences in the duodenal wall structure,liver lipid deposition,enteroendocrine,claudin,and zonula ocludens-1 in the duodenal mucosa.RESULTS DMA using IRE could be safely performed in rats with NAFLD without duodenal bleeding,perforation,or stenosis.The duodenum healed well 2 weeks after DMA and was characterized by slimmer villi,narrower and shallower crypts,and thicker myenterons compared with the sham-control setting.Liver lipid deposition was reduced and serum lipid index parameters were considerably improved in the DMA setting.However,these improvements were independent of food intake and weight loss.In addition,enteroendocrine parameters,such as claudin,and zonula ocludens-1 levels in the duodenal mucosa,differed between the different settings in the DMA group.CONCLUSION By altering enteroendocrine and duodenal permeability,simple DMA using IRE ameliorated liver lipid deposition and improved serum lipid parameters in NAFLD rats.
基金supported by the National Key R&D Pro-gram of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373,52130205,and 52302091)+1 种基金the Joint Fund of Henan Province Science and Technol-ogy R&D Program(No.225200810002)the ND Basic Research Funds of Northwestern Polytechnical University(No.G2022WD).
文摘Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.
文摘This editorial comments on a study by Zuo et al.The focus is on the efficacy of he-patic arterial infusion chemotherapy combined with camrelizumab and apatinib(the TRIPLET regimen),alongside microwave ablation therapy,in treating advanced hepatocellular carcinoma(HCC).The potential application of this combination therapy for patients with advanced HCC is evaluated.
基金Open Fund of Zhijian Laboratory,Rocket Force University of Engineering(2024-ZJSYS-KF02-09)National Natural Science Foundation of China(51902028,52272034)+1 种基金Key Research and Development Program of Shaanxi(2023JBGS-15)Fundamental Research Funds for the Central Universities(Changan University,300102313202,300102312406)。
文摘To improve the compactness and properties of C/C-SiC-ZrC composites produced by precursor infiltration and pyrolysis(PIP)method,the low-temperature reactive melt infiltration(RMI)process was used to seal the composites using Zr_(2)Cu as the filler.The microstructure,mechanical properties,and ablation properties of the Zr_(2)Cu packed composites were analyzed.Results show that during Zr_(2)Cu impregnation,the melt efficiently fills the large pores of the composites and is converted to ZrCu due to a partial reaction of zirconium with carbon.This results in an increase in composite density from 1.91 g/cm^(3)to 2.24 g/cm^(3)and a reduction in open porosity by 27.35%.Additionally,the flexural strength of Zr_(2)Cu packed C/C-SiC-ZrC composites is improved from 122.78±8.09 MPa to 135.53±5.40 MPa.After plasma ablation for 20 s,the modified composites demonstrate superior ablative resistance compared to PIP C/C-SiC-ZrC,with mass ablation and linear ablation rates of 2.77×10^(−3)g/s and 2.60×10^(−3)mm/s,respectively.The“selftranspiration”effect of the low-melting point copper-containing phase absorbs the heat of the plasma flame,further reducing the ablation temperature and promoting the formation of refined ZrO_(2)particles within the SiO_(2)melting layer.This provides more stable erosion protection for Zr_(2)Cu packed C/C-SiC-ZrC composites.
文摘Ultrasound-guided percutaneous thermal ablation has gained popularity as treatment for malignant hepatic tumors.It was first introduced as ablation therapy for hepatocellular carcinoma and cirrhosis comorbidity.Recently,this technique has also been used in the treatment of intrahepatic cholangiocarcinoma for patients who are not eligible for surgical resection.There are several types of thermal ablation techniques.Radiofrequency ablation and microwave ablation are two common methods that induce necrosis of the lesions.Irreversible electroporation is a relatively new non-thermal technique and is suitable in cases where thermal ablation would be ineffective or dangerous(e.g.,malignant tumors close to vascular or biliary structures).Irreversible electroporation can induce tumoral necrosis without damage to vascular and biliary structures.The aim of this minireview was to describe the safety,efficacy,and clinical indications of these techniques in the treatment of patients with intrahepatic cholangiocarcinoma who are ineligible for surgery.
文摘Cryotherapy is a treatment modality that uses extreme cold to destroy unwanted tissue through both immediate and delayed cellular injury.This therapy is increasingly being adopted across various medical specialties due to its minimally invasive nature and technological advancements that have been made.In the esophagus,cryotherapy is particularly utilized for the management of Barrett esophagus.It has been demonstrated to be effective and safe with potential benefits,such as a reduction in pain,over radiofrequency ablation.Additionally,it might offer a valuable alternative for patients unresponsive to radiofrequency ablation.Cryotherapy is applied for other conditions as well,including esophageal squamous cell neoplasia and malignant dysphagia.More research is needed to gain understanding of the utility in these conditions.Interestingly,cryotherapy has shown the ability to enhance the host’s immune response in reaction to antigens left in situ after treatment.While preclinical data have demonstrated promising results,the immune response is often insufficient to induce tumor regression in the clinical setting.Therefore,there is growing interest in the combination of cryotherapy and immunotherapy where ablation creates an antigen depot,and the immune system is subsequently stimulated.This combination holds promise for the future and potentially opens new doors for a breakthrough in cancer treatment.
基金Supported by the Joint Medical Scientific Research Project of Chongqing Science and Technology Committee and Chongqing Health Committee,No.2021MSXM308.
文摘Microwave ablation(MWA)is emerging as a highly effective treatment for colorectal liver metastases(CRLMs).This review explores the advantages of MWA compared to other ablative techniques such as radiofrequency ablation and cryoablation and highlights its clinical efficacy,safety,and technical considerations.MWA offers significant benefits,including higher intratumoral temperatures,larger ablation zones,and reduced susceptibility to the heat-sink effect,which make it particularly suitable for tumors near large blood vessels.This review details the patient selection criteria,procedural approaches,and the use of advanced imaging techniques to improve the precision and effectiveness of MWA.Clinical outcomes indicate that MWA achieves high rates of complete tumor ablation and long-term survival with a favorable safety profile.This review is significant because it provides updated insights into the expanding role of MWA in treating unresectable CRLM and its potential as an alternative to surgical resection for resectable tumors.By summarizing recent studies and clinical trials,this review highlights the comparative effectiveness,safety,and integration with systemic therapies of MWA.In conclusion,MWA is a promising treatment option for CRLM and offers outcomes comparable to or better than those of other ablative techniques.Future research should focus on optimizing technical parameters,integrating MWA with systemic therapies,and conducting large-scale randomized controlled trials to establish standardized treatment protocols.Advancing our understanding of MWA will enhance its application and improve long-term survival and quality of life for patients with CRLM.
基金supported by the 2024 University Scientific Research Project of Guangzhou Education Bureau(Project No.24312286Certificate No.gd20249983112).
文摘Objective: To evaluate the efficacy of endovenous radiofrequency ablation (RFA) and laser ablation (EVLA) in the treatment of superficial varicose veins of the lower extremities. Methods: Seventy-eight patients with superficial varicose veins treated at a hospital between April 2022 and May 2023 were selected and divided into a radiofrequency ablation group (RFA group;39 cases) and a laser ablation group (EVLA group;39 cases) based on the treatment method. Operation time, postoperative recovery duration, venous clinical severity score (VCSS) changes, complication rates, closure rates, and recurrence rates were compared between the groups at 1 month, 3 months, and 12 months postoperatively. The postoperative therapeutic outcomes were comprehensively evaluated. Results: No significant differences in age, gender, disease grade, or disease course were observed between the groups (P > 0.05). The superficial varicose vein closure rate was 100% in both groups at 1 and 3 months postoperatively. At 12 months, the closure rate was 94.87% in the RFA group and 97.43% in the EVLA group, with no statistically significant difference (P > 0.05). No significant differences were observed in VCSS changes or complication incidence between the groups (P > 0.05). Conclusion: Radiofrequency ablation and laser ablation demonstrate comparable efficacy and safety in the treatment of superficial varicose veins of the lower extremities.