Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nin...Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved u...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.展开更多
Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that re...Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved usi...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.展开更多
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies ...According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.展开更多
Many of the technology and computational chemistry applications are used to study drugs and their biological effects. Flutab®drug contains Paracetamol, Diphenhydramine and Pseudoephedrine. Ab-initio calculatio...Many of the technology and computational chemistry applications are used to study drugs and their biological effects. Flutab®drug contains Paracetamol, Diphenhydramine and Pseudoephedrine. Ab-initio calculations were performed at DFT/B3LYP and HF methods with three basis sets, namely, STO-3G, 3-21G, and 6-31G(d) in order to calculate the dipole moments of the three constituents of Flutab®drug. The Diphenhydramine compound was found to be the most stable constituent, with the lowest value of dipole moment.展开更多
The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculati...The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.展开更多
As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL pow...As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.展开更多
Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are chall...Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.展开更多
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear...Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embas...AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.展开更多
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three...The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.展开更多
In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,a...In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input.展开更多
The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,whic...The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.展开更多
Neutron-rich boron,carbon,and nitrogen isotopes have garnered extensive experimental and theoretical interest.In the present work,we conducted a comprehensive study of these nuclei by utilizing ab initio valence-space...Neutron-rich boron,carbon,and nitrogen isotopes have garnered extensive experimental and theoretical interest.In the present work,we conducted a comprehensive study of these nuclei by utilizing ab initio valence-space in-medium similarity renormalization group calculations with chiral nucleon-nucleon and three-nucleon interactions.First,we systematically calculated the spectra of nuclei.Our results align well with the available experimental data,which are comparable to phenomenological shell model calculations.Subsequently,the evolution of the N=14 and N=16 shell gaps is discussed based on the calculated spectra and the effective single-particle energies.Our calculations suggest that the N=14 neutron subshell is present in the oxygen isotopes but disappears in the boron,carbon,and nitrogen isotopic chains.Moreover,the N=16 subshell is present in all isotopes but gradually decreases from^(24)O to^(21)B.These results provide valuable information for future studies.展开更多
Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from R...Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.展开更多
Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p ...Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.展开更多
By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture defor...By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.展开更多
AIM:To evaluate the accuracy of intraocular lens(IOL)power calculation formulas with/without preoperative aphakic anterior chamber depth(aph-ACD)in pediatric aphakia.METHODS:A total of 102 pediatric patients(150 eyes)...AIM:To evaluate the accuracy of intraocular lens(IOL)power calculation formulas with/without preoperative aphakic anterior chamber depth(aph-ACD)in pediatric aphakia.METHODS:A total of 102 pediatric patients(150 eyes)undergoing secondary IOL implantation were divided into two groups(in-the-bag or ciliary sulcus).Prediction error was calculated for 9 IOL power calculation formulas,including:1)not requiring ACD:Hoffer Q,Holladay 1,SRK/T;2)usable without or with entering ACD:Barrett Universal II(BUII),Emmetropia Verifying Optical(EVO)2.0,and Ladas Artificial Intelligence Super(Ladas AI);3)requiring ACD:Haigis,Kane,and Pearl-DGS.Mean prediction error(ME),mean absolute error(MAE),median absolute error(MedAE)and the percentage of eyes within±0.25,±0.50,±0.75,and±1.00 D were calculated.RESULTS:For the BUII,EVO 2.0,and Ladas AI,with aph-ACD demonstrated a higher MedAE compared to without aph-ACD(BUII:1.27 vs 1.13 D,EVO 2.0:1.26 vs 1.06 D,Ladas AI:1.30 vs 1.10 D;all P<0.05).Formulas requiring ACD(Haigis,Kane,and Pearl-DGS)exhibited larger MedAE than those not requiring aph-ACD(Hoffer Q,Holladay 1,and SRK/T;P<0.05).In the capsular group,the percentage of eyes within±1.00 D ranged from 44.83%to 74.14%,and it was 19.57%to 32.61%in the sulcus group.CONCLUSION:The introduction of aph-ACD does not improve the accuracy of IOL calculation for pediatric aphakia,regardless of in-the-bag or sulcus IOL secondary implantation.The relationship between aph-ACD and effective lens position in pediatric aphakia warrants further study.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51464034 and 51301107).
文摘Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many cases, quantitative analysis.
文摘Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.
文摘According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
文摘Many of the technology and computational chemistry applications are used to study drugs and their biological effects. Flutab®drug contains Paracetamol, Diphenhydramine and Pseudoephedrine. Ab-initio calculations were performed at DFT/B3LYP and HF methods with three basis sets, namely, STO-3G, 3-21G, and 6-31G(d) in order to calculate the dipole moments of the three constituents of Flutab®drug. The Diphenhydramine compound was found to be the most stable constituent, with the lowest value of dipole moment.
基金Funded by the National Key R&D Program of China(No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2022212004)the National Natural Science Foundation of China(No.52171045),and the Joint Fund(No.8091B022108)。
文摘The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.
文摘As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12393831 and 12088101).
文摘Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.
文摘Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Supported by Beijing Natural Science Foundation from Beijing Municipal Government(No.7202030).
文摘AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.
基金Zhejiang Provincial Natural Science Foundation of China for Young Scholars(Project No.:LQ20A020009)National College Students’Innovation and Entrepreneurship Training Program(Project No.:202311842014X)。
文摘The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.
基金supported by the National Key Research and Development Program of China(No.2022YFB4600900).
文摘In this study,6061 aluminum alloy and galvanized steel fusion-brazed lap joints were obtained using a laser-arc hybrid heat source,and the effects of laser power variation on the microstructure,mechanical properties,and fracture mechanism of the joints were ana-lyzed.The results showed that the tensile shear load initially increased with rising laser power,followed by a decrease.At a laser power of 240 W,the maximum tensile shear load was 2479.8 N/cm and the weak section of joint was in the Al-Fe reaction layer con-sisting of Fe(Al,Si)_(3),Fe_(2)(Al,Si)_(5),and Fe(Al,Si)intermetallic compounds(IMCs).Computational results showed that the inherently high brittleness and hardness of Fe(Al,Si)_(3) and the high mismatch rates of Fe(Al,Si)_(3)/Al interfaces were the key factor leading to the failure of the joints at lower heat input.
基金supported by the National Natural Science Foundation of China(Nos.52364044 and 52204364)Central Guidance on Local Science and Technology Development Fund Projects of Inner Mongolia Autonomous Region(No.2022ZY0090)Basic Scientific Research Business Expenses of Colleges and Universities in Inner Mongolia Autonomous Region(Nos.2023QNJS011 and 0406082226).
文摘The micro-area characterization experiments like scanning Kelvin probe force microscope(SKPFM)and Kernel average misorientation have the defects of complex sample preparation and occasional errors in test results,which makes it impossible to accurately and quickly analyze the pitting behavior induced by inclusions in some cases,prompting attempts to turn to simulation calculation research.The method of calculating band structure and work function can be used to replace current-sensing atomic force microscopy and SKPFM to detect the potential and conductivity of the sample.The band structure results show that Al_(2)O_(3) inclusion is an insulator and non-conductive,and it will not form galvanic corrosion with the matrix.Al_(2)O_(3) inclusion does not dissolve because its work function is higher than that of the matrix.Moreover,the stress concentration of the matrix around the inclusion can be characterized by first-principles calculation coupled with finite element simulation.The results show that the stress concentration degree of the matrix around Al_(2)O_(3) inclusion is serious,and the galvanic corrosion is formed between the high and the low stress concentration areas,which can be used to explain the reason of the pitting induced by Al_(2)O_(3) inclusions.
基金supported by the National Key R&D Program of China(Nos.2024YFE0109800 and 2024YFE0109802)the National Natural Science Foundation of China(Nos.12405141,12347106,12205340,and 12121005)+1 种基金the Gansu Natural Science Foundation(No.25JRRA467)the Key Research Program of the Chinese Academy of Sciences(No.XDPB15)。
文摘Neutron-rich boron,carbon,and nitrogen isotopes have garnered extensive experimental and theoretical interest.In the present work,we conducted a comprehensive study of these nuclei by utilizing ab initio valence-space in-medium similarity renormalization group calculations with chiral nucleon-nucleon and three-nucleon interactions.First,we systematically calculated the spectra of nuclei.Our results align well with the available experimental data,which are comparable to phenomenological shell model calculations.Subsequently,the evolution of the N=14 and N=16 shell gaps is discussed based on the calculated spectra and the effective single-particle energies.Our calculations suggest that the N=14 neutron subshell is present in the oxygen isotopes but disappears in the boron,carbon,and nitrogen isotopic chains.Moreover,the N=16 subshell is present in all isotopes but gradually decreases from^(24)O to^(21)B.These results provide valuable information for future studies.
基金supported by the National Natural Science Foundation of China(Nos.22207036,22277034,22477034,and 22107033)Interdisciplinary Research Program of Huazhong University of Science and Technology(No.2023JCYJ037)International Cooperation Project of Hubei Provincial Key R&D Plan(No.2023EHA040)。
文摘Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.
基金supported by the National Natural Science Foundation of China(Grant no.52463025,and 52062035)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Grant no.20213BCJ22056)+2 种基金the Key R&D Program of Jiangxi Province(Grant no.20223BBE51028)the Jiangxi Province Key Laboratory of Lithium-ion Battery Materials and Application(2024SSY05202)the Jiangxi Province Graduate Innovation Special Fund Project(YC2023-B004)。
文摘Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.
基金Supported by the Joint Fund Key Program of the National Natural Science Foundation of China(U21B2069)Key Research and Development Program of Shandong Province(2022CXGC020407)Basic Science Center Program of the National Natural Science Foundation of China(52288101)。
文摘By comprehensively considering the influences of temperature and pressure on fluid density in high temperature and high pressure(HTHP)wells in deepwater fractured formations and the effects of formation fracture deformation on well shut-in afterflow,this study couples the shut-in temperature field model,fracture deformation model,and gas flow model to establish a wellbore pressure calculation model incorporating thermo-hydro-mechanical coupling effects.The research analyzes the governing patterns of geothermal gradient,bottomhole pressure difference,drilling fluid pit gain,and kick index on casing head pressure,and establishes a shut-in pressure determination chart for HPHT wells based on coupled model calculation results.The study results show:geothermal gradient,bottomhole pressure difference,and drilling fluid pit gain exhibit positive correlations with casing head pressure;higher kick indices accelerate pressure rising rates while maintaining a constant maximum casing pressure;validation against field case data demonstrates over 95%accuracy in predicting wellbore pressure recovery after shut-in,with the pressure determination chart achieving 97.2%accuracy in target casing head pressure prediction and 98.3%accuracy in target shut-in time.This method enables accurate acquisition of formation pressure after HPHT well shut-in,providing reliable technical support for subsequent well control measures and ensuring safe and efficient development of deepwater and deep hydrocarbon reservoirs.
基金Supported by the Joint Funding Project of Municipal Schools(Colleges)of Science and Technology Program of Guangzhou,China(No.2023A03J0188)the Construction Project of High-Level Hospitals in Guangdong Province(No.303020102)the Natural Science Fund of Guangdong Province(No.2023A1515011102).
文摘AIM:To evaluate the accuracy of intraocular lens(IOL)power calculation formulas with/without preoperative aphakic anterior chamber depth(aph-ACD)in pediatric aphakia.METHODS:A total of 102 pediatric patients(150 eyes)undergoing secondary IOL implantation were divided into two groups(in-the-bag or ciliary sulcus).Prediction error was calculated for 9 IOL power calculation formulas,including:1)not requiring ACD:Hoffer Q,Holladay 1,SRK/T;2)usable without or with entering ACD:Barrett Universal II(BUII),Emmetropia Verifying Optical(EVO)2.0,and Ladas Artificial Intelligence Super(Ladas AI);3)requiring ACD:Haigis,Kane,and Pearl-DGS.Mean prediction error(ME),mean absolute error(MAE),median absolute error(MedAE)and the percentage of eyes within±0.25,±0.50,±0.75,and±1.00 D were calculated.RESULTS:For the BUII,EVO 2.0,and Ladas AI,with aph-ACD demonstrated a higher MedAE compared to without aph-ACD(BUII:1.27 vs 1.13 D,EVO 2.0:1.26 vs 1.06 D,Ladas AI:1.30 vs 1.10 D;all P<0.05).Formulas requiring ACD(Haigis,Kane,and Pearl-DGS)exhibited larger MedAE than those not requiring aph-ACD(Hoffer Q,Holladay 1,and SRK/T;P<0.05).In the capsular group,the percentage of eyes within±1.00 D ranged from 44.83%to 74.14%,and it was 19.57%to 32.61%in the sulcus group.CONCLUSION:The introduction of aph-ACD does not improve the accuracy of IOL calculation for pediatric aphakia,regardless of in-the-bag or sulcus IOL secondary implantation.The relationship between aph-ACD and effective lens position in pediatric aphakia warrants further study.