Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction ...Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction of synthetically useful N-containing molecules,especially valuable N-heterocycles.However,successful examples of intermolecular generation ofα-imino gold carbenes by using azides as amination reagents are rarely explored probably due to the weak nucleophilicity of azides.Herein,we disclose an efficient gold-catalyzed intermolecular aminative cyclopropanation of ynamides with the allyl azides,enabling flexible synthesis of a wide range of valuable 3-azabicyclo[3.1.0]hex-2-ene derivatives in good to excellent yields with excellent diastereoselectivities.Importantly,this protocol represents the first use of allyl azide as an efficient amination reagent in gold-catalyzed alkyne amination reactions.展开更多
The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressib...The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressibility of Ca(N_(3))_(2)changed as the pressure increased,and no phase transition occurred within the pressure from ambient pressure up to 54 GPa.The measured zero-pressure bulk modulus of Ca(N_(3))_(2)is higher than that of other alkali metal azides,due to differences in the ionic character of their metal-azide bonds.Using CASTEP,all vibration modes of Ca(N_(3))_(2)were accurately identified in the vibrational spectrum at ambient pressure.In the high-pressure vibration study,several external modes(ext.)and internal bending modes(ν_(2))of azide anions(N_(3)^(-))softened up to~7 GPa and then hardened beyond that pressure.This evidence is consistent with the variation observed in the F_(E)–f_(E)data analyzed from the XRD result,where the slope of the curve changes at 7.1 GPa.The main behaviors under pressure are the alternating compression,rotation,and bending of N_(3)^(-)ions.The bending behavior makes the structure of Ca(N_(3))_(2)more stable under pressure.展开更多
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analy...bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analysis. Azido groups were introduced into furazan derivatives and energetic materials of high nitrogen content and high enthalpy of formation can be obtained. The densities of compound Ⅰ and Ⅱ are relatively high. Compound Ⅰ is an azide of lower melting point, it is hopeful to be applied as energetic plastic additives.展开更多
A mild,efficient and simple method for the preparation of acyl azides from carboxylic acids using chlorodiphenylphosphine in the presence of molecular iodine and sodium azide is described.
The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare f...The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles(PTAs) with linear and hyperbranched structures.The Cu(I)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.展开更多
The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) ...The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).展开更多
Ru(bpy)3]2+-cored supramolecular organic framework SMOF-1, assembled from a [Ru(bpy)3]2+-derived hexaarmed molecule and cucurbit[8]uril, has been demonstrated to heterogeneously catalyze visible light-induced reductio...Ru(bpy)3]2+-cored supramolecular organic framework SMOF-1, assembled from a [Ru(bpy)3]2+-derived hexaarmed molecule and cucurbit[8]uril, has been demonstrated to heterogeneously catalyze visible light-induced reduction of phenyl, benzyl, 2-phenylethyl and 3-phenylpropyl azides in acetonitrile to produce the corresponding amines in good to high yields. For the last two kinds of azides that bear a CO2Me group at the para-position of the benzene ring, cascade reactions take place to generate the corresponding lactams in high yields. Compared with homogeneous control [Ru(bpy)3]Cl2, SMOF-1 exhibits remarkably increased photocatalysis activity as a result of synergistic effect of the [Ru(bpy)3]2+ units that form cubic cages to host the azide molecules and related intermediates. Moreover, SMOF-1 displays high recyclability and considerable photocatalysis activity after 3 to 12 runs.展开更多
An efficient and mild protocol for bromination of aryl azides with N-bromosuccinimide(NBS) under FeCl_3 catalysis in 1,2- dichloroethane was developed.It is proved to be an efficient method for obtaining brominated ...An efficient and mild protocol for bromination of aryl azides with N-bromosuccinimide(NBS) under FeCl_3 catalysis in 1,2- dichloroethane was developed.It is proved to be an efficient method for obtaining brominated aryl azides.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditi...Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditions.展开更多
The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064...The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064(10), b = 10.5015(5), c = 17.3193(11) ,A, β= 111.314(2)°, V = 2678.2 (3) ,A ^3 C16H26N10O10S2Zn2, Mr = 713.33, Z = 4, DC = 1.769 g/cm^3, μ = 2.017 mm^-1 and F(000) = 1456. The asymmetric unit consists of two half-molecules of the complex and two water molecules. Four N and two O atoms form the coordination environment of each Zn atom, resulting in a distorted octahedral configuration. The two halves of each independent dimer are related by a crystallographic inversion centre, which lies at the centre of the ring formed by two Zn atoms and the coordinating atoms of the two azide anions. The average separation of Zn(Ⅱ)...Zn(Ⅱ) is 3.322 A. The molecules are linked by O-H...O hydrogen bonds, generating an interesting zigzag infinite chain structure in the ac plane.展开更多
Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of ...Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of N–H to release H2O.Using sodium L-ascorbate as a reductant,the binuclear complex showed excellent activity in 1,3-dipolar cycloaddition reactions between alkynes and azides to obtain 1,4-disubstituted triazoles in 95%–99% isolated yields.展开更多
Heterocyclic ketene aminals 1 react with aryl azides 2 to give the titled compounds 3,and in some cases also with the formation of fused heterocycles 4.
Azide-functionalization of single-walled carbon nanotubes (SWCNTs) was achieved by electrochemical oxidation of N3 in situ. The functionalized nanotubes were characterized in details by single internal reflection in...Azide-functionalization of single-walled carbon nanotubes (SWCNTs) was achieved by electrochemical oxidation of N3 in situ. The functionalized nanotubes were characterized in details by single internal reflection infrared spectroscopy (ATR-FTIR) and thermogravimetic analysis (TGA/MS). The results revealed that a covalent C-N bond had formed and this might provide an effective method for the preparation of azide-functionalized materials, especially carbon materials. The degree of functionaliza- tion was measured by X-ray photoelectron spectroscopy (XPS).展开更多
Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using ...Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems.展开更多
A novel cuprous azide complex with the formula of [Cu2(dmpz)(N3)2]n(1, dmpz: 2,6-dimethylpyrazine) has been synthesized through hydrothermal synthesis with the reducibility of H3PO3 and structurally characteriz...A novel cuprous azide complex with the formula of [Cu2(dmpz)(N3)2]n(1, dmpz: 2,6-dimethylpyrazine) has been synthesized through hydrothermal synthesis with the reducibility of H3PO3 and structurally characterized by single-crystal X-ray diffraction method. Single-crystal X-ray diffraction analysis reveals the title complex represents a three-dimensional network structure featuring 2D [Cu N3]n plane units bridged by bridging dmpz ligands to form a 3D network. Research results reveal that 1 has lower impact sensitivity and friction sensitivity, which may be expected to become insensitive energetic material and have potential applications. Crystal data: monoclinic, space group C2/c, a = 17.8599(15), b = 8.2889(5), c = 14.8076(14) A, β = 113.2580(10)o, V = 2014.0(3) A3, Z = 8, S = 1.025, the final R = 0.0303, w R = 0.0825 for 1460 observed reflections with I 2σ(I) and R = 0.0386, wR = 0.0870 for all reflections. In addition, elemental analysis, IR, and sensitivity characterization are presented.展开更多
The azides were reduced to the corresponding amines by two new metal/Lewis acid systems in water or in aqueous EtOH in yields ranging from 80%-95%. The reaction rates were faster in water than in aqueous EtOH in most...The azides were reduced to the corresponding amines by two new metal/Lewis acid systems in water or in aqueous EtOH in yields ranging from 80%-95%. The reaction rates were faster in water than in aqueous EtOH in most cases. All 16 azides with different functional groups were well reduced to the corresponding amines in excellent yields and reaction rates.展开更多
The title complex [CoIII(2, 2?bpy)2(N3)2]種O3?H2O was obtained by an auto-oxidization reaction of cobalt nitrate with 2, 2-bpy and sodium azide in aqueous solution at room temperature, and violet single crystals were ...The title complex [CoIII(2, 2?bpy)2(N3)2]種O3?H2O was obtained by an auto-oxidization reaction of cobalt nitrate with 2, 2-bpy and sodium azide in aqueous solution at room temperature, and violet single crystals were prepared in ethanol solution. The structure was determined by X-ray crystallography. The crystal is of triclinic, space group P ?with a = 8.285(4), b = 11.990(8), c = 12.596(7) ? a = 86.630(3), b = 86.280(5), g = 71.130(10)? C20H20CoN11O5, Mr = 553.40, Z = 2, V = 1180.6(12) ?, F(000) = 568, Dc = 1.557 g/cm3, m = 0.784 mm-1, R = 0.0403 and wR = 0.1008. The title complex consists of a [CoⅢ(2, 2?bpy)2(N3)2]+ cation, a NO3- anion and two lattice water molecules. The center CoⅢ ion coordinated by two chelating 2, 2?bpy ligands and two terminal azide groups with a CoN6 coordination environment exhibits a distorted octahedral geometry.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.22125108,22331004 and 22121001)Yunnan Normal University,Applied Basic Research Projects of Yunnan Province(No.202101AT070217)+1 种基金the Jiangxi Provincial Natural Science Foundation(No.20224BAB213013)the Jiangxi Provincial Department of Education in Science and Technology Program Project(No.GJJ210906)。
文摘Gold-catalyzed amination reactions based on azides viaα-imino gold carbene intermediates have attracted extensive attention in the past decades because this methodology leads to the facile and efficient construction of synthetically useful N-containing molecules,especially valuable N-heterocycles.However,successful examples of intermolecular generation ofα-imino gold carbenes by using azides as amination reagents are rarely explored probably due to the weak nucleophilicity of azides.Herein,we disclose an efficient gold-catalyzed intermolecular aminative cyclopropanation of ynamides with the allyl azides,enabling flexible synthesis of a wide range of valuable 3-azabicyclo[3.1.0]hex-2-ene derivatives in good to excellent yields with excellent diastereoselectivities.Importantly,this protocol represents the first use of allyl azide as an efficient amination reagent in gold-catalyzed alkyne amination reactions.
基金Project supported financially by the Program for the Development of Science and Technology of Jilin Province,China(Grant Nos.YDZJ202301ZYTS382,YDZJ202201ZYTS316,and 20230101285JC)the National Natural Science Foundation of China(Grant No.11904128)+1 种基金the Program for Science and Technology of Education Department of Jilin Province,China(Grant Nos.JJKH20220438KJ and JJKH20220423KJ)the Program for the Jilin Provincial Development and Reform Commission Project(Grant No.2022C040-6)。
文摘The high-pressure structure and elastic properties of calcium azide(Ca(N_(3))_(2))were investigated using in-situ highpressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa,respectively.The compressibility of Ca(N_(3))_(2)changed as the pressure increased,and no phase transition occurred within the pressure from ambient pressure up to 54 GPa.The measured zero-pressure bulk modulus of Ca(N_(3))_(2)is higher than that of other alkali metal azides,due to differences in the ionic character of their metal-azide bonds.Using CASTEP,all vibration modes of Ca(N_(3))_(2)were accurately identified in the vibrational spectrum at ambient pressure.In the high-pressure vibration study,several external modes(ext.)and internal bending modes(ν_(2))of azide anions(N_(3)^(-))softened up to~7 GPa and then hardened beyond that pressure.This evidence is consistent with the variation observed in the F_(E)–f_(E)data analyzed from the XRD result,where the slope of the curve changes at 7.1 GPa.The main behaviors under pressure are the alternating compression,rotation,and bending of N_(3)^(-)ions.The bending behavior makes the structure of Ca(N_(3))_(2)more stable under pressure.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.
文摘bis(azidomethyl) 3,3′ bis(1,2,4 oxadiazole)(Ⅰ) and bis(azidoacetamino) oxazofurazan(Ⅱ) were synthesized. The structures of these two compounds have been identified by IR, 1H NMR, MS and elemental analysis. Azido groups were introduced into furazan derivatives and energetic materials of high nitrogen content and high enthalpy of formation can be obtained. The densities of compound Ⅰ and Ⅱ are relatively high. Compound Ⅰ is an azide of lower melting point, it is hopeful to be applied as energetic plastic additives.
基金the Persian Gulf University Research Council for generous partial financial support of this study
文摘A mild,efficient and simple method for the preparation of acyl azides from carboxylic acids using chlorodiphenylphosphine in the presence of molecular iodine and sodium azide is described.
基金partially supported by the National Natural Science Foundation of China(Nos.50703033,20974098 and 20974028)the Ministry of Science and Technology of China(2009CB623605)+1 种基金the Research Grants Council of Hong Kong (603509,HKUST2/CRF/10)the University Grants Committee of Hong Kong(AoE/P-03/08)
文摘The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles(PTAs) with linear and hyperbranched structures.The Cu(I)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.
基金This work is supported by the National Natural Science Foundation of China (No.21473163, No.21033002, No.21202032) and the National Basic Research Program of China (No.2013CB834604).
文摘The excited state structural dynamics of phenyl absorbing S2(A'), S3(A'), and S6(A') states were troseopy and complete active space self-consistent and the UV absorption bands were assigned on azide (PhN3) after excitation to the light studied using the resonance Raman specfield calculations. The vibrational spectra the basis of the Fourier transform (FT)- Raman, FT-infrared measurements, the density-functional theory computations and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohex- ane, acetonitrile, and methanol solvents were, respectively, obtained at 273.9, 252.7, 245.9, 228.7, 223.1, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PhN3. The results indicated that the structural dynamics in the S2 (A'), S3(A'), and S6(A') states were significantly different. The crossing points of the potential energy surfaces, S2S1(1) and S2S1(2), were predicted to play a key role in the low-lying excited state decay dynamics, in accordance with Kasha's rule, and NT=N8 dissociation. Two decay channels initiated from the Franck-Condon region of the S2(A') state were predicted: the radiative S2,min→S0 radiative decay and the S2→S1 internal conversion through the crossing points S2S1 (1)/S2S1(2).
基金supported by the National Natural Science Foundation of China (Nos. 21432004 and 21890732)
文摘Ru(bpy)3]2+-cored supramolecular organic framework SMOF-1, assembled from a [Ru(bpy)3]2+-derived hexaarmed molecule and cucurbit[8]uril, has been demonstrated to heterogeneously catalyze visible light-induced reduction of phenyl, benzyl, 2-phenylethyl and 3-phenylpropyl azides in acetonitrile to produce the corresponding amines in good to high yields. For the last two kinds of azides that bear a CO2Me group at the para-position of the benzene ring, cascade reactions take place to generate the corresponding lactams in high yields. Compared with homogeneous control [Ru(bpy)3]Cl2, SMOF-1 exhibits remarkably increased photocatalysis activity as a result of synergistic effect of the [Ru(bpy)3]2+ units that form cubic cages to host the azide molecules and related intermediates. Moreover, SMOF-1 displays high recyclability and considerable photocatalysis activity after 3 to 12 runs.
基金supported by National Natural Science Foundation of China(No30873153)the Key Projects of Shanghai in Biomedical(No08431902700)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘An efficient and mild protocol for bromination of aryl azides with N-bromosuccinimide(NBS) under FeCl_3 catalysis in 1,2- dichloroethane was developed.It is proved to be an efficient method for obtaining brominated aryl azides.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
文摘Conducted in the ionic liquids, activated and inactivated halides, acyl chlorides, tosylate, and bezotriazolyl acylates were converted to corresponding azide and thiocyanide compounds in high yields under mild conditions.
基金This work was supported by the Natural Science Foundation of Guangxi (No. 0339034) and the Science Research Foundation of Guangxi Normal University
文摘The title complex [Zn2L2(N3)2(H2O)2]·2H2O (L = N-(2-pyridylmethylidene) taurine) has been synthesized in a methanol-water solution. The crystal belongs to monoclinic, space group P2 1/C with a = 15.8064(10), b = 10.5015(5), c = 17.3193(11) ,A, β= 111.314(2)°, V = 2678.2 (3) ,A ^3 C16H26N10O10S2Zn2, Mr = 713.33, Z = 4, DC = 1.769 g/cm^3, μ = 2.017 mm^-1 and F(000) = 1456. The asymmetric unit consists of two half-molecules of the complex and two water molecules. Four N and two O atoms form the coordination environment of each Zn atom, resulting in a distorted octahedral configuration. The two halves of each independent dimer are related by a crystallographic inversion centre, which lies at the centre of the ring formed by two Zn atoms and the coordinating atoms of the two azide anions. The average separation of Zn(Ⅱ)...Zn(Ⅱ) is 3.322 A. The molecules are linked by O-H...O hydrogen bonds, generating an interesting zigzag infinite chain structure in the ac plane.
基金supported by the China Postdoctoral Science Foundation(2013M541254)the National Natural Science Foundation of China(21502120)+1 种基金the Program for Innovative Research Team of the Ministry of Educationthe Program for Liaoning Innovative Research Team in University~~
文摘Ligands containing NH groups often show special characteristics.In this paper,a well-defined dinuclear Cu(II) complex bearing an unsymmetrical bipyridine-pyrazole-amine ligand was synthesized by the condensation of N–H to release H2O.Using sodium L-ascorbate as a reductant,the binuclear complex showed excellent activity in 1,3-dipolar cycloaddition reactions between alkynes and azides to obtain 1,4-disubstituted triazoles in 95%–99% isolated yields.
文摘Heterocyclic ketene aminals 1 react with aryl azides 2 to give the titled compounds 3,and in some cases also with the formation of fused heterocycles 4.
文摘Azide-functionalization of single-walled carbon nanotubes (SWCNTs) was achieved by electrochemical oxidation of N3 in situ. The functionalized nanotubes were characterized in details by single internal reflection infrared spectroscopy (ATR-FTIR) and thermogravimetic analysis (TGA/MS). The results revealed that a covalent C-N bond had formed and this might provide an effective method for the preparation of azide-functionalized materials, especially carbon materials. The degree of functionaliza- tion was measured by X-ray photoelectron spectroscopy (XPS).
基金the financial support provided by the National Natural Science Foundation of China(No.11872013)。
文摘Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems.
基金Supported by the National Natural Science Foundation of China(No.21203160)Education Department Foundation of Shaanxi Province(No.12JK0631)+1 种基金Natural Science Foundation of Shaanxi Province(No.2013JM2013)Special Research Fund of Xianyang Normal University(No.11XSYK204,11XSYK205,12XSYK023)
文摘A novel cuprous azide complex with the formula of [Cu2(dmpz)(N3)2]n(1, dmpz: 2,6-dimethylpyrazine) has been synthesized through hydrothermal synthesis with the reducibility of H3PO3 and structurally characterized by single-crystal X-ray diffraction method. Single-crystal X-ray diffraction analysis reveals the title complex represents a three-dimensional network structure featuring 2D [Cu N3]n plane units bridged by bridging dmpz ligands to form a 3D network. Research results reveal that 1 has lower impact sensitivity and friction sensitivity, which may be expected to become insensitive energetic material and have potential applications. Crystal data: monoclinic, space group C2/c, a = 17.8599(15), b = 8.2889(5), c = 14.8076(14) A, β = 113.2580(10)o, V = 2014.0(3) A3, Z = 8, S = 1.025, the final R = 0.0303, w R = 0.0825 for 1460 observed reflections with I 2σ(I) and R = 0.0386, wR = 0.0870 for all reflections. In addition, elemental analysis, IR, and sensitivity characterization are presented.
文摘The azides were reduced to the corresponding amines by two new metal/Lewis acid systems in water or in aqueous EtOH in yields ranging from 80%-95%. The reaction rates were faster in water than in aqueous EtOH in most cases. All 16 azides with different functional groups were well reduced to the corresponding amines in excellent yields and reaction rates.
文摘The title complex [CoIII(2, 2?bpy)2(N3)2]種O3?H2O was obtained by an auto-oxidization reaction of cobalt nitrate with 2, 2-bpy and sodium azide in aqueous solution at room temperature, and violet single crystals were prepared in ethanol solution. The structure was determined by X-ray crystallography. The crystal is of triclinic, space group P ?with a = 8.285(4), b = 11.990(8), c = 12.596(7) ? a = 86.630(3), b = 86.280(5), g = 71.130(10)? C20H20CoN11O5, Mr = 553.40, Z = 2, V = 1180.6(12) ?, F(000) = 568, Dc = 1.557 g/cm3, m = 0.784 mm-1, R = 0.0403 and wR = 0.1008. The title complex consists of a [CoⅢ(2, 2?bpy)2(N3)2]+ cation, a NO3- anion and two lattice water molecules. The center CoⅢ ion coordinated by two chelating 2, 2?bpy ligands and two terminal azide groups with a CoN6 coordination environment exhibits a distorted octahedral geometry.