To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated...To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility.展开更多
Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The micro...Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.展开更多
基金the China Scholarship Council[grant numbers:201907000039],the National Key Research and Development Plan of China[grant number 2017YFB0305905]The authors acknowledge the financial support from the 2020 open projects[grant numbers:KLATM202003]of Key laboratory of Advanced Technologies of Materials,Ministry of Education China,Southwest Jiaotong University。
文摘To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility.
基金supported by Key Development Project of Sichuan Province(Grant No.2017GZ0399)。
文摘Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.