Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,...Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.展开更多
Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term ...Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term axle counting system monitoring.Design/methodology/approach–Wheel–rail mechanical behavior was simulated via finite element analysis(FEA)to determine optimal sensor placement.A clip-on composite sensor was subsequently engineered.Stress transduction efficacy was validated through FEA quantification of stress responses at the axle counter location.Findings–The proposed FBG axle counter integrates temperature compensation and anti-detachment monitoring as well as advantages such as simplified installation with minimal maintenance and sustained operational reliability.It effectively transmits stress,yielding a measured strain of 39μe under static loading conditions without sensitivity-enhancing elements.Originality/value–This study performs FEA of wheel-rail stress distribution and engineers the dual-slot composite sensor,FEAwas conducted to quantify the stress magnitude at the axle sensor position of the dual-slot composite sensor.Additionally,FEA was performed on sensors with different structural configurations,including adjustments to the axle sensor position,number of slots and axle position.The results confirmed that the designed composite sensor exhibits superior stress transfer characteristics.展开更多
Axle box bearings serve as crucial components within the transmission system of high-speed trains.Their failure can directly impact the operational safety of these trains.Accurately determining the dynamic load experi...Axle box bearings serve as crucial components within the transmission system of high-speed trains.Their failure can directly impact the operational safety of these trains.Accurately determining the dynamic load experienced by bearings during the operation of high-speed trains can provide valuable boundary inputs for the study of bearing fatigue life and service performance,thereby holding significant engineering implications.In this study,we propose a high-speed train axle box bearing load estimation method(FMCC-DKF).This method is founded on the Kalman filtering technique of the Maximum Correntropy Criterion(MCC)and employs dummy measurement technology to enhance the stability of estimated loads.We develop a kernel size update algorithm to address the challenges associated with obtaining the key parameter,kernel size of MCC.Comparative analysis of the vertical and lateral loads of the axle box bearing obtained using FMCC-DKF,DKF,and AMCC-DKF,under both measurement noise-free and non-Gaussian noise conditions,is conducted to demonstrate the superiority of the proposed estimation method.The results indicate that the proposed FMCC-DKF method exhibits high estimation accuracy under both measurement noise-free and non-Gaussian noise interference,and maintains its high estimation accuracy despite changes in train speed.The proposed load estimation method demonstrates reliable performance within the low-frequency domain below 70 Hz.展开更多
Heavy-duty freight railway axles are no less important than those of passenger trains,owing to the potentially catastrophic results caused by the derailment of trains carrying hazardous substances.Intrinsic and extrin...Heavy-duty freight railway axles are no less important than those of passenger trains,owing to the potentially catastrophic results caused by the derailment of trains carrying hazardous substances.Intrinsic and extrinsic imperfections challenge classical design theories built based on the safe life concept,and damage tolerance assessment becomes vital for the safety and reliability of long-term serviced railway axles,as pits and scratches are common defects for heavy-duty railway axles.In this work,four-point rotating bending fatigue tests of AAR-CM railway axle steel specimens with semicircular and circumferential groove notches are conducted.The fatigue limit of the semicircular notched specimens was evaluated based on fracture mechanics theory,in which non-conservative results are obtained by the El Haddad model and the S–N curves of circumferential groove notched specimens are correlated by the theory of critical distance(TCD).展开更多
In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on...In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on the simulation results,the 3D model of the front axle was optimized,and the finite element analysis of the optimized structure of the front axle under three typical working conditions was carried out to verify the correctness of the model.Finally,the fatigue tool module of ANSYS Workbench was used to analyze the fatigue life of the front axle under the optimized emergency conditions,and the feasibility of the model was verified.The analysis data shows that the design of the front axle components still has a lot of potential for lightweighting,and the weight of the front axle can be reduced by 6.73%through optimization,and the performance of the front axle can also meet the needs of use.The research conclusionhas a certain reference value for the lightweight design of automobile front axle.展开更多
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di...As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12372056,12032017,12393783)the S&T Program of Hebei of China(No.24465001D)。
文摘Axle box bearings are critical components of high-speed trains.Localized defects,such as pitting and spalling,on raceways or rollers pose significant threats to the operational safety of railway vehicles.In this work,a novel bearing-flexible axle boxvehicle coupling model is established to explore the vibration characteristics of axle box bearings with irregular localized defects.First,based on the contact and kinematic relationship between rollers and raceways,the three-dimensional(3D)bearing force elements are analyzed and formulated.Second,the established model and a flexible axle box are integrated into the vehicle,and the responses of the normal and faulty bearings under the combined excitations of wheel roughness and track irregularities are simulated.Third,the simulation results are verified through a rolling-vibrating test bench for full-scale wheelsets of high-speed trains.The comparisons of the fault-induced repetitive transients in the time-domain and the fault characteristic frequencies in the envelope spectra demonstrate the efficiency of the proposed model.Finally,based on the flexible axle box model,a sensitivity analysis of the accelerometer placements to the bearing faults is carried out,and the optimal one is identified based on both the time-domain and frequency-domain signal-to-noise ratios(SNRs)for engineering applications.
文摘Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term axle counting system monitoring.Design/methodology/approach–Wheel–rail mechanical behavior was simulated via finite element analysis(FEA)to determine optimal sensor placement.A clip-on composite sensor was subsequently engineered.Stress transduction efficacy was validated through FEA quantification of stress responses at the axle counter location.Findings–The proposed FBG axle counter integrates temperature compensation and anti-detachment monitoring as well as advantages such as simplified installation with minimal maintenance and sustained operational reliability.It effectively transmits stress,yielding a measured strain of 39μe under static loading conditions without sensitivity-enhancing elements.Originality/value–This study performs FEA of wheel-rail stress distribution and engineers the dual-slot composite sensor,FEAwas conducted to quantify the stress magnitude at the axle sensor position of the dual-slot composite sensor.Additionally,FEA was performed on sensors with different structural configurations,including adjustments to the axle sensor position,number of slots and axle position.The results confirmed that the designed composite sensor exhibits superior stress transfer characteristics.
基金National Key R&D Program of China(Grant numbers 2022YFB4301201-11,2022YFB4301203-05)National Natural Science Foundation of China(Grant number 52202464).
文摘Axle box bearings serve as crucial components within the transmission system of high-speed trains.Their failure can directly impact the operational safety of these trains.Accurately determining the dynamic load experienced by bearings during the operation of high-speed trains can provide valuable boundary inputs for the study of bearing fatigue life and service performance,thereby holding significant engineering implications.In this study,we propose a high-speed train axle box bearing load estimation method(FMCC-DKF).This method is founded on the Kalman filtering technique of the Maximum Correntropy Criterion(MCC)and employs dummy measurement technology to enhance the stability of estimated loads.We develop a kernel size update algorithm to address the challenges associated with obtaining the key parameter,kernel size of MCC.Comparative analysis of the vertical and lateral loads of the axle box bearing obtained using FMCC-DKF,DKF,and AMCC-DKF,under both measurement noise-free and non-Gaussian noise conditions,is conducted to demonstrate the superiority of the proposed estimation method.The results indicate that the proposed FMCC-DKF method exhibits high estimation accuracy under both measurement noise-free and non-Gaussian noise interference,and maintains its high estimation accuracy despite changes in train speed.The proposed load estimation method demonstrates reliable performance within the low-frequency domain below 70 Hz.
基金Supported by National Natural Science Foundation of China(Grant No.12232004)Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2022A1515140111)+1 种基金Anhui Provincial Science and Technology Projects(Grant No.JB24075)Sichuan Provincial Science and Technology Program(Grant Nos.2024NSFSC2020,2023YFG0234)。
文摘Heavy-duty freight railway axles are no less important than those of passenger trains,owing to the potentially catastrophic results caused by the derailment of trains carrying hazardous substances.Intrinsic and extrinsic imperfections challenge classical design theories built based on the safe life concept,and damage tolerance assessment becomes vital for the safety and reliability of long-term serviced railway axles,as pits and scratches are common defects for heavy-duty railway axles.In this work,four-point rotating bending fatigue tests of AAR-CM railway axle steel specimens with semicircular and circumferential groove notches are conducted.The fatigue limit of the semicircular notched specimens was evaluated based on fracture mechanics theory,in which non-conservative results are obtained by the El Haddad model and the S–N curves of circumferential groove notched specimens are correlated by the theory of critical distance(TCD).
文摘In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on the simulation results,the 3D model of the front axle was optimized,and the finite element analysis of the optimized structure of the front axle under three typical working conditions was carried out to verify the correctness of the model.Finally,the fatigue tool module of ANSYS Workbench was used to analyze the fatigue life of the front axle under the optimized emergency conditions,and the feasibility of the model was verified.The analysis data shows that the design of the front axle components still has a lot of potential for lightweighting,and the weight of the front axle can be reduced by 6.73%through optimization,and the performance of the front axle can also meet the needs of use.The research conclusionhas a certain reference value for the lightweight design of automobile front axle.
基金supported by the National Natural Science Foundation of China(52075032)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(K2022J023).
文摘As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.