At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ...At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.展开更多
针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点...针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。展开更多
针对多自主水下航行器(Autonomous Underwater Vehicle,AUV)的全覆盖路径规划问题,提出了一种考虑随机初始位置约束的多AUV覆盖路径规划方法(Dividing Areas based on Robots Initial Positions CPP,DARIP-CPP)。根据多自主水下机器人...针对多自主水下航行器(Autonomous Underwater Vehicle,AUV)的全覆盖路径规划问题,提出了一种考虑随机初始位置约束的多AUV覆盖路径规划方法(Dividing Areas based on Robots Initial Positions CPP,DARIP-CPP)。根据多自主水下机器人的随机初始位置对工作海域进行均衡区域划分,将划分所得的不重叠区域分配给多AUV进行独立覆盖路径规划,每台AUV利用生物启发神经网络(Bio-inspired Neural Network)优化各个区域的全覆盖路径。为了克服传统全覆盖路径规划中的“死区”问题,采用A^(*)路径规划算法进行“死区”逃离,沿着较短的路径快速到达未覆盖区域点。仿真结果表明,所提出的DARIPCPP方法可有效提高多AUV全覆盖目标区域的工作效率。展开更多
为解决基于深度强化学习的AUV跟踪控制器在面临新任务时需从零开始训练、训练速度慢、稳定性差等问题,设计一种基于元强化学习的AUV多任务快速自适应控制算法——R-SAC(Reptile-Soft Actor Critic)算法。R-SAC算法将元学习与强化学习相...为解决基于深度强化学习的AUV跟踪控制器在面临新任务时需从零开始训练、训练速度慢、稳定性差等问题,设计一种基于元强化学习的AUV多任务快速自适应控制算法——R-SAC(Reptile-Soft Actor Critic)算法。R-SAC算法将元学习与强化学习相结合,结合水下机器人运动学及动力学方程对跟踪任务进行建模,利用RSAC算法在训练阶段为AUV跟踪控制器获得一组最优初始值模型参数,使模型在面临不同的任务时,基于该组参数进行训练时能够快速收敛,实现快速自适应不同任务。仿真结果表明,所提出的方法与随机初始化强化学习控制器相比,收敛速度最低提高了1.6倍,跟踪误差保持在2.8%以内。展开更多
Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-mo...Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.展开更多
文摘At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.
文摘针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。
文摘针对多自主水下航行器(Autonomous Underwater Vehicle,AUV)的全覆盖路径规划问题,提出了一种考虑随机初始位置约束的多AUV覆盖路径规划方法(Dividing Areas based on Robots Initial Positions CPP,DARIP-CPP)。根据多自主水下机器人的随机初始位置对工作海域进行均衡区域划分,将划分所得的不重叠区域分配给多AUV进行独立覆盖路径规划,每台AUV利用生物启发神经网络(Bio-inspired Neural Network)优化各个区域的全覆盖路径。为了克服传统全覆盖路径规划中的“死区”问题,采用A^(*)路径规划算法进行“死区”逃离,沿着较短的路径快速到达未覆盖区域点。仿真结果表明,所提出的DARIPCPP方法可有效提高多AUV全覆盖目标区域的工作效率。
文摘为解决基于深度强化学习的AUV跟踪控制器在面临新任务时需从零开始训练、训练速度慢、稳定性差等问题,设计一种基于元强化学习的AUV多任务快速自适应控制算法——R-SAC(Reptile-Soft Actor Critic)算法。R-SAC算法将元学习与强化学习相结合,结合水下机器人运动学及动力学方程对跟踪任务进行建模,利用RSAC算法在训练阶段为AUV跟踪控制器获得一组最优初始值模型参数,使模型在面临不同的任务时,基于该组参数进行训练时能够快速收敛,实现快速自适应不同任务。仿真结果表明,所提出的方法与随机初始化强化学习控制器相比,收敛速度最低提高了1.6倍,跟踪误差保持在2.8%以内。
基金Project(2006AA09Z235)supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003)supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.