In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels....In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.Initially,the Fe-3Mn-0.2C-1.5Si(wt%)steel is intercritically annealed to form Mn-enriched lamellar martensite precursors.Subsequently,the austenite reversion transformation is manipulated to occur within the martensite lamellae during the second annealing process,resulting in an ultra-fine duplex microstructure of laminated austenite and ferrite.This process can not only allow a large fraction of austenite to be retained in low-Mn medium-Mn steels,but also increase the elongation by up to 41%without sacrificing the strength level compared to the conventional annealing.展开更多
The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatte...The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure.展开更多
In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indic...In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future.展开更多
How to describe the austenite reverse transformation(ART)has always been considered as a key problem of controlling microstructures and mechanical properties in high-strength steels.So far,numerous studies have been c...How to describe the austenite reverse transformation(ART)has always been considered as a key problem of controlling microstructures and mechanical properties in high-strength steels.So far,numerous studies have been conducted,unfortunately,without fully considering diffusion of elements,interface migration,and interaction between trans-interface diffusion and interface migration,as well as synergy of thermodynamic and kinetic for interfacial migration.A more flexible modeling for the ART is herein developed using thermodynamic extremal principle,where the concept of trans-interface diffusion in two steps,i.e.,from the parent phase to the interface and from the interface to the product phase,as well as the Gibbs energy balance approach,was introduced to predict the behavior of interface migration and element trans-interface diffusion within the migrating interface.Subsequently,the thermodynamic driving force ΔG and the effective kinetic energy barrier Q_(eff) for the ART were also analytically performed,as well as a unified expression for so-called generalized stability(GS).It is demonstrated that the higher driving force in the ART generally results in the increased yield strength,while the larger GS tends to yield improved uniform elongation,thus forming a correspondence between the thermo-kinetics trade-off and the strength-ductility trade-off.Applying a proposed criterion of high ΔG-high GS,the present model can be adopted to design the ART,which will produce the austenite microstructure with high strength and high plasticity,as evidenced by the current experiments.展开更多
Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor...Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.展开更多
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model...The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.展开更多
The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Ch...The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Charpy U-notch impact energy initially increased and subsequently decreased as the solid-solution temperature rose,while the yield strength consistently decreased.The size of prior austenite grain and martensite block always increased with rising the solid-solution temperature,and austenite grain growth activation energy is 274,969 J/mol.The growth of prior austenite was restricted by primary carbides M6C and MC.The dissolution of the primary carbides not only enhanced solid-solution strengthening and secondary hardening effects but also increased the volume fraction of retained austenite.The increase in the ultimate tensile strength and Charpy U-notch impact energy was primarily attributed to the dissolution of the primary carbides M6C and MC,while the decrease was due to the increase in the size of prior austenite grain and martensite block.Exceptional combination of strength,ductility and toughness with ultimate tensile strength of 2511 MPa,yield strength of 1920 MPa,elongation of 9.5%,reduction of area of 41%and Charpy U-notch impact energy of 19.5 J was obtained when experimental steel was solid-solution treated at 1020℃.展开更多
Hypoeutectoid steel,a crucial metal structural material,is characterized by the coexisting microstructure of ferrite and pearlite.Driven by multiphase competition and multicomponent characteristics,the intricate inter...Hypoeutectoid steel,a crucial metal structural material,is characterized by the coexisting microstructure of ferrite and pearlite.Driven by multiphase competition and multicomponent characteristics,the intricate interplay among its composition,processing conditions,and microstructure substantially complicates the understanding of austenite decomposition kinetics and elemental diffusion mechanisms during phase transformations.The present study explores the effects of cooling rate,prior austenite grain size,and C content on the component distribution and microstructure evolution during the austenite decomposition of hypoeutectoid steels to address the aforementioned complexities.Results of a multiphase field model reveal that an increase in the cooling rate from 1.0 to 7.0℃/s leads to a reduction in the ferrite proportion and fine pearlite lamellae spacing from 52vol% to 22vol% at 400℃ and from 1.01 to 0.67μm at 660℃,respectively.Concurrently,a decreased prior austenite grain size from 25.23 to 8.92μm enhances the phase transformation driving force,resulting in small average grain sizes of pearlite clusters and proeutectoid ferrite.Moreover,increasing the C content from 0.22wt% to 0.37wt% decreases the phase transition temperature from 795 to 750℃ and enhances the proportion of pearlite phases from 27vol%to 61vol% at 500℃,concurrently refining the spacing of pearlite layers from 1.25 to 0.87μm at 600℃.Overall,this work aims to elucidate the complex dynamics governing the microstructural transformations of hypoeutectoid steels,thereby facilitating their wide application across different industrial scenes.展开更多
The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient...The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.展开更多
Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an e...Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.展开更多
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)...Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.展开更多
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr...The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.展开更多
The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for...The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel展开更多
The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by opti...The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by optical microscope,X-ray diffraction,scanning electron microscope and Feritscope,while the mechanical properties were determined by hardness and tensile tests.The results revealed that the content of retained austenite decreased by about 2% after multi-step tempering.However,the content of retained austenite increased from 3.6% to 5.1% by increasing multi-step tempering temperature.The hardness and tensile strength increased as the austenitization temperature changed from 800 to 920 ℃,while above 920 ℃,hardness and tensile strength decreased.In addition,the maximum values of hardness,ultimate and yield strength were obtained via triple tempering at 520 ℃,while beyond 520 ℃,the hardness,ultimate and yield strength decreased sharply.展开更多
Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The int...Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The intercritical austenite exhibited a lath morphology due to the martensitic microstructure maintained prior to intercritical annealing.Consequently,the alloy element enrichment of intercritical austenite,in which the alloy element was aggregated at the austenitic boundaries and further diffused inside,improved the stability of intercritical austenite and decreased the M_(s) of it.As a result,the fraction of retained austenite in steel was increased,which improved the mechanical properties of the experimental Q-P steel.展开更多
The austenitizing temperature controls the carbon content of the austenite which,in turn,influences the structure and properties of cast irons after subsequent cooling to room temperature.In this paper,for a cast iron...The austenitizing temperature controls the carbon content of the austenite which,in turn,influences the structure and properties of cast irons after subsequent cooling to room temperature.In this paper,for a cast iron with known silicon content,a formula of calculating austenite carbon content at a certain austenitizing temperature was developed.This relationship can be used to more accurately select carbon content of austenite or austenitizing temperature to produce desired properties after subsequent cooling to room temperature.展开更多
The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experime...The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.展开更多
Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystall...Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystallization behavior of Nb-V-Ti high strength microalloyed low carbon pipeline steel were studied, and the influence of the thermomechanical treatment parameters on dynamic and static recrystallization of the steel was investigated. It was found that microalloying elements improved the deformation activation energy and produced a retardation of the recrystallization due to the solid solution and precipitation pinning. The deformation conditions such as deformation temperature, strain, and strain rate influenced the recrystallization kinetics and the microstructure respectively. Equations obtained can be used to valuate and predict the dynamic and static recrystallizations.展开更多
An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf...An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.展开更多
The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine...The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine grained austenite was attributed to the high density of austenite nucleation at the ferrite/martensite structure and to the inhibition of austenite growth by (Ti~ V)C particles at the relatively low reheating temperature. Corresponding with the precipitation behavior of (Ti,V)C with temperature, the growth behavior of austenite in the vanadium mi- croalloyed steel could be divided into two regions. At lower reheating temperature, austenite grains grew slowly, and ultra-fine grained austenite smaller than 5 ~m was successfully obtained. By contrast, the austenite grains grew rap- idly at high temperature due to the dissolution of (Ti, V)C particles. According to the measured and predicted results of austenite growth kinetics, two models were developed to describe the growth behavior of austenite grains in two different temperature regions, and the apparent activation energy Qapp for grain growth was estimated to be about 115 and 195 kJ/mol, respectively.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52321001 and 52071322).
文摘In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.Initially,the Fe-3Mn-0.2C-1.5Si(wt%)steel is intercritically annealed to form Mn-enriched lamellar martensite precursors.Subsequently,the austenite reversion transformation is manipulated to occur within the martensite lamellae during the second annealing process,resulting in an ultra-fine duplex microstructure of laminated austenite and ferrite.This process can not only allow a large fraction of austenite to be retained in low-Mn medium-Mn steels,but also increase the elongation by up to 41%without sacrificing the strength level compared to the conventional annealing.
基金financially supported by the National Natural Science Foundation of China(Nos.52271089 and 52001023)the Basic Research and Application Basic Research Foundation of Guangdong Province(Nos.2022A1515240016 and 2023B1515250006)the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure.
基金the National Natural Science Foundation of China(Grant Nos.52325406,52374331,and U1960203)the Program of Introducing Talents of Discipline to Universities(Grant No.B21001).
文摘In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future.
基金supported by the National Natural Science Foundation of China(Nos.52130110,52271116,52431002)the Fundamental Research Funds for the Central Universities(No.D5000220052)the Aeronautical Science Foundation of China(2023Z053053003).
文摘How to describe the austenite reverse transformation(ART)has always been considered as a key problem of controlling microstructures and mechanical properties in high-strength steels.So far,numerous studies have been conducted,unfortunately,without fully considering diffusion of elements,interface migration,and interaction between trans-interface diffusion and interface migration,as well as synergy of thermodynamic and kinetic for interfacial migration.A more flexible modeling for the ART is herein developed using thermodynamic extremal principle,where the concept of trans-interface diffusion in two steps,i.e.,from the parent phase to the interface and from the interface to the product phase,as well as the Gibbs energy balance approach,was introduced to predict the behavior of interface migration and element trans-interface diffusion within the migrating interface.Subsequently,the thermodynamic driving force ΔG and the effective kinetic energy barrier Q_(eff) for the ART were also analytically performed,as well as a unified expression for so-called generalized stability(GS).It is demonstrated that the higher driving force in the ART generally results in the increased yield strength,while the larger GS tends to yield improved uniform elongation,thus forming a correspondence between the thermo-kinetics trade-off and the strength-ductility trade-off.Applying a proposed criterion of high ΔG-high GS,the present model can be adopted to design the ART,which will produce the austenite microstructure with high strength and high plasticity,as evidenced by the current experiments.
文摘Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.
基金financially supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project,Nos.2022JH25/10200003 and 2023JH2/101800058)the Fundamental Research Funds for the Central Universities(Nos.N25YJS003 and N25DCG006)。
文摘The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%.
基金supported financially by National Key Research and Development Program of China(No.2022YFB3705200)Heilongjiang Province's Key Technology Project:‘Leading the Charge with Open Competition’(No.2023ZXJ04A02)Youth Program of CISRI Funding under Grant(No.S-23T60190B).
文摘The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Charpy U-notch impact energy initially increased and subsequently decreased as the solid-solution temperature rose,while the yield strength consistently decreased.The size of prior austenite grain and martensite block always increased with rising the solid-solution temperature,and austenite grain growth activation energy is 274,969 J/mol.The growth of prior austenite was restricted by primary carbides M6C and MC.The dissolution of the primary carbides not only enhanced solid-solution strengthening and secondary hardening effects but also increased the volume fraction of retained austenite.The increase in the ultimate tensile strength and Charpy U-notch impact energy was primarily attributed to the dissolution of the primary carbides M6C and MC,while the decrease was due to the increase in the size of prior austenite grain and martensite block.Exceptional combination of strength,ductility and toughness with ultimate tensile strength of 2511 MPa,yield strength of 1920 MPa,elongation of 9.5%,reduction of area of 41%and Charpy U-notch impact energy of 19.5 J was obtained when experimental steel was solid-solution treated at 1020℃.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3702401)the National Natural Science Foundation of China(Nos.52122408 and 52071023)+1 种基金financial support from the Fundamental Research Funds for the Central Universities,China(University of Science and Technology Beijing(USTB),Nos.FRF-TP-202104C1 and 06500135)supported by USTB Mat Com of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘Hypoeutectoid steel,a crucial metal structural material,is characterized by the coexisting microstructure of ferrite and pearlite.Driven by multiphase competition and multicomponent characteristics,the intricate interplay among its composition,processing conditions,and microstructure substantially complicates the understanding of austenite decomposition kinetics and elemental diffusion mechanisms during phase transformations.The present study explores the effects of cooling rate,prior austenite grain size,and C content on the component distribution and microstructure evolution during the austenite decomposition of hypoeutectoid steels to address the aforementioned complexities.Results of a multiphase field model reveal that an increase in the cooling rate from 1.0 to 7.0℃/s leads to a reduction in the ferrite proportion and fine pearlite lamellae spacing from 52vol% to 22vol% at 400℃ and from 1.01 to 0.67μm at 660℃,respectively.Concurrently,a decreased prior austenite grain size from 25.23 to 8.92μm enhances the phase transformation driving force,resulting in small average grain sizes of pearlite clusters and proeutectoid ferrite.Moreover,increasing the C content from 0.22wt% to 0.37wt% decreases the phase transition temperature from 795 to 750℃ and enhances the proportion of pearlite phases from 27vol%to 61vol% at 500℃,concurrently refining the spacing of pearlite layers from 1.25 to 0.87μm at 600℃.Overall,this work aims to elucidate the complex dynamics governing the microstructural transformations of hypoeutectoid steels,thereby facilitating their wide application across different industrial scenes.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.
文摘Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.
基金supported by the Project of Scientific and Technical Supporting Program of China during the 11th Five-Year Plan(No.2006BAE03A06)
文摘Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.
文摘The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite.
文摘The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel
文摘The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by optical microscope,X-ray diffraction,scanning electron microscope and Feritscope,while the mechanical properties were determined by hardness and tensile tests.The results revealed that the content of retained austenite decreased by about 2% after multi-step tempering.However,the content of retained austenite increased from 3.6% to 5.1% by increasing multi-step tempering temperature.The hardness and tensile strength increased as the austenitization temperature changed from 800 to 920 ℃,while above 920 ℃,hardness and tensile strength decreased.In addition,the maximum values of hardness,ultimate and yield strength were obtained via triple tempering at 520 ℃,while beyond 520 ℃,the hardness,ultimate and yield strength decreased sharply.
文摘Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The intercritical austenite exhibited a lath morphology due to the martensitic microstructure maintained prior to intercritical annealing.Consequently,the alloy element enrichment of intercritical austenite,in which the alloy element was aggregated at the austenitic boundaries and further diffused inside,improved the stability of intercritical austenite and decreased the M_(s) of it.As a result,the fraction of retained austenite in steel was increased,which improved the mechanical properties of the experimental Q-P steel.
基金supported by the scientific and technological project of China Textile Industry Association
文摘The austenitizing temperature controls the carbon content of the austenite which,in turn,influences the structure and properties of cast irons after subsequent cooling to room temperature.In this paper,for a cast iron with known silicon content,a formula of calculating austenite carbon content at a certain austenitizing temperature was developed.This relationship can be used to more accurately select carbon content of austenite or austenitizing temperature to produce desired properties after subsequent cooling to room temperature.
文摘The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.
基金Item Sponsored by National Key Technologies Research and Development Program of China (2006BAE03A15)
文摘Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystallization behavior of Nb-V-Ti high strength microalloyed low carbon pipeline steel were studied, and the influence of the thermomechanical treatment parameters on dynamic and static recrystallization of the steel was investigated. It was found that microalloying elements improved the deformation activation energy and produced a retardation of the recrystallization due to the solid solution and precipitation pinning. The deformation conditions such as deformation temperature, strain, and strain rate influenced the recrystallization kinetics and the microstructure respectively. Equations obtained can be used to valuate and predict the dynamic and static recrystallizations.
文摘An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.
基金Item Sponsored by National Basic Research Program of China(2010CB630805)National Natural Science Foundation of China(51201036)China Iron and Steel Research Institute Group(12060840A)
文摘The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine grained austenite was attributed to the high density of austenite nucleation at the ferrite/martensite structure and to the inhibition of austenite growth by (Ti~ V)C particles at the relatively low reheating temperature. Corresponding with the precipitation behavior of (Ti,V)C with temperature, the growth behavior of austenite in the vanadium mi- croalloyed steel could be divided into two regions. At lower reheating temperature, austenite grains grew slowly, and ultra-fine grained austenite smaller than 5 ~m was successfully obtained. By contrast, the austenite grains grew rap- idly at high temperature due to the dissolution of (Ti, V)C particles. According to the measured and predicted results of austenite growth kinetics, two models were developed to describe the growth behavior of austenite grains in two different temperature regions, and the apparent activation energy Qapp for grain growth was estimated to be about 115 and 195 kJ/mol, respectively.