期刊文献+
共找到739篇文章
< 1 2 37 >
每页显示 20 50 100
Improving Ductility of a 3Mn Medium-Mn Steel by Manipulating the Austenite Reversion Path
1
作者 Qinyuan Zheng Yi Lu +4 位作者 Chengwu Zheng Peng Liu Tian Liang Yikun Luan Dianzhong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1583-1590,共8页
In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.... In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.Initially,the Fe-3Mn-0.2C-1.5Si(wt%)steel is intercritically annealed to form Mn-enriched lamellar martensite precursors.Subsequently,the austenite reversion transformation is manipulated to occur within the martensite lamellae during the second annealing process,resulting in an ultra-fine duplex microstructure of laminated austenite and ferrite.This process can not only allow a large fraction of austenite to be retained in low-Mn medium-Mn steels,but also increase the elongation by up to 41%without sacrificing the strength level compared to the conventional annealing. 展开更多
关键词 Medium-Mn steel austenite reversion Mn partitioning Retained austenite Tensile properties
原文传递
In-situ high-temperature EBSD study of austenite reversion from martensite,bainite and pearlite in a high-strength steel 被引量:1
2
作者 X.L.Wang X.Y.Wang +2 位作者 Z.P.Liu Z.J.Xie C.J.Shang 《Journal of Materials Science & Technology》 2025年第14期268-280,共13页
The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatte... The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure. 展开更多
关键词 In-situ characterization High-temperature EBSD austenite reversion CEMENTITE Nucleation and growth Crystallography
原文传递
Parent austenite grain reconstruction in martensitic steel
3
作者 Hao Feng Haijian Wang +3 位作者 Huabing Li Hongchun Zhu Shucai Zhang Zhouhua Jiang 《Journal of Materials Science & Technology》 2025年第12期244-257,共14页
In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indic... In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future. 展开更多
关键词 Martensitic steel Parent austenite grain RECONSTRUCTION Electron backscattering diffraction VARIANT
原文传递
Thermo-Kinetic Understanding of the Correlation Between Austenite Reverse Transformation and Mechanical Properties for Medium Manganese Steel
4
作者 Yong Hou Haiyu Liu +3 位作者 Yao Wang Yu Zhang Yayun Zhang Feng Liu 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1195-1206,共12页
How to describe the austenite reverse transformation(ART)has always been considered as a key problem of controlling microstructures and mechanical properties in high-strength steels.So far,numerous studies have been c... How to describe the austenite reverse transformation(ART)has always been considered as a key problem of controlling microstructures and mechanical properties in high-strength steels.So far,numerous studies have been conducted,unfortunately,without fully considering diffusion of elements,interface migration,and interaction between trans-interface diffusion and interface migration,as well as synergy of thermodynamic and kinetic for interfacial migration.A more flexible modeling for the ART is herein developed using thermodynamic extremal principle,where the concept of trans-interface diffusion in two steps,i.e.,from the parent phase to the interface and from the interface to the product phase,as well as the Gibbs energy balance approach,was introduced to predict the behavior of interface migration and element trans-interface diffusion within the migrating interface.Subsequently,the thermodynamic driving force ΔG and the effective kinetic energy barrier Q_(eff) for the ART were also analytically performed,as well as a unified expression for so-called generalized stability(GS).It is demonstrated that the higher driving force in the ART generally results in the increased yield strength,while the larger GS tends to yield improved uniform elongation,thus forming a correspondence between the thermo-kinetics trade-off and the strength-ductility trade-off.Applying a proposed criterion of high ΔG-high GS,the present model can be adopted to design the ART,which will produce the austenite microstructure with high strength and high plasticity,as evidenced by the current experiments. 展开更多
关键词 austenite reverse transformation Thermodynamic extremal principle Thermo-kinetic correlation Generalized stability Material property
原文传递
Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater
5
作者 Chao Hai Yuetong Zhu +1 位作者 Cuiwei Du Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期657-671,共15页
Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor... Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness. 展开更多
关键词 High-strength low-carbon steel Intercritical heat treatment Retained austenite Corrosion resistance Microgalvanic effect
原文传递
Grain growth kinetics model of high-temperature ferrite and austenite in Ti microalloyed steel during continuous casting
6
作者 Tianci Chen Cheng Ji +2 位作者 Jianhua Yang Yunguang Chi Miaoyong Zhu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1390-1403,共14页
The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model... The microstructural characteristics of austenite in Ti microalloyed steel during continuous casting significantly influence thethermoplasticity,thereby affecting the quality of the slab.In this work,a prediction model for two-stage austenite growth under varyingcooling rates was established by incorporating the effect of second-phase pinning and high-temperature ferrite-austenite phase transform-ation and growth theory.The results indicate that with 0.02wt%Ti,the high-temperature ferrite growth exhibits typical parabolic growthcharacteristics.When the Ti content increases to 0.04wt%,the high-temperature ferrite grain boundary migration rate significantly slowsduring the initial solidification stage.The predicted austenite grain sizes for 0.02wt%Ti microalloyed steel at the center,quarter,and sur-face of the slab are 5592,3529,and 1524μm,respectively.For 0.04wt%Ti microalloyed steel,the austenite grain sizes are 4074,2942,and 1179μm at the same positions.The average error is within 5%.As the Ti content increases from 0.02wt% to 0.04wt%,the austenitegrain refinement at the center is most significant,with an average grain size reduction of 27.14%. 展开更多
关键词 Ti microalloyed steel slab continuous casting phase transfer Ti carbonitrides austenite growth kinetics
在线阅读 下载PDF
Effects of prior austenite and primary carbides on mechanical properties of a novel 2.5 GPa grade ultra-high strength steel
7
作者 Yue Liu Shun Han +5 位作者 Ru-ming Geng Xue-dong Pang Yu Liu Si-min Lei Yong Li Chun-xu Wang 《Journal of Iron and Steel Research International》 2025年第7期2064-2075,共12页
The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Ch... The effects of prior austenite and primary carbides on the mechanical properties of a novel 2.5 GPa grade steel were investigated by treating at various solid-solution temperatures.The ultimate tensile strength and Charpy U-notch impact energy initially increased and subsequently decreased as the solid-solution temperature rose,while the yield strength consistently decreased.The size of prior austenite grain and martensite block always increased with rising the solid-solution temperature,and austenite grain growth activation energy is 274,969 J/mol.The growth of prior austenite was restricted by primary carbides M6C and MC.The dissolution of the primary carbides not only enhanced solid-solution strengthening and secondary hardening effects but also increased the volume fraction of retained austenite.The increase in the ultimate tensile strength and Charpy U-notch impact energy was primarily attributed to the dissolution of the primary carbides M6C and MC,while the decrease was due to the increase in the size of prior austenite grain and martensite block.Exceptional combination of strength,ductility and toughness with ultimate tensile strength of 2511 MPa,yield strength of 1920 MPa,elongation of 9.5%,reduction of area of 41%and Charpy U-notch impact energy of 19.5 J was obtained when experimental steel was solid-solution treated at 1020℃. 展开更多
关键词 Ultra-high strength steel Solid-solution temperature Prior austenite M_(6)C carbide MC carbide Mechanical property
原文传递
Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel
8
作者 Kaiyang Wang Honghui Wu +7 位作者 Shaojie Lv Linshuo Dong Chaolei Zhang Shuize Wang Guilin Wu Junheng Gao Jiaming Zhu Xinping Mao 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1427-1440,共14页
Hypoeutectoid steel,a crucial metal structural material,is characterized by the coexisting microstructure of ferrite and pearlite.Driven by multiphase competition and multicomponent characteristics,the intricate inter... Hypoeutectoid steel,a crucial metal structural material,is characterized by the coexisting microstructure of ferrite and pearlite.Driven by multiphase competition and multicomponent characteristics,the intricate interplay among its composition,processing conditions,and microstructure substantially complicates the understanding of austenite decomposition kinetics and elemental diffusion mechanisms during phase transformations.The present study explores the effects of cooling rate,prior austenite grain size,and C content on the component distribution and microstructure evolution during the austenite decomposition of hypoeutectoid steels to address the aforementioned complexities.Results of a multiphase field model reveal that an increase in the cooling rate from 1.0 to 7.0℃/s leads to a reduction in the ferrite proportion and fine pearlite lamellae spacing from 52vol% to 22vol% at 400℃ and from 1.01 to 0.67μm at 660℃,respectively.Concurrently,a decreased prior austenite grain size from 25.23 to 8.92μm enhances the phase transformation driving force,resulting in small average grain sizes of pearlite clusters and proeutectoid ferrite.Moreover,increasing the C content from 0.22wt% to 0.37wt% decreases the phase transition temperature from 795 to 750℃ and enhances the proportion of pearlite phases from 27vol%to 61vol% at 500℃,concurrently refining the spacing of pearlite layers from 1.25 to 0.87μm at 600℃.Overall,this work aims to elucidate the complex dynamics governing the microstructural transformations of hypoeutectoid steels,thereby facilitating their wide application across different industrial scenes. 展开更多
关键词 hypoeutectoid steels phase-field simulation cooling rate prior austenite grain size carbon content
在线阅读 下载PDF
A kinetic model for austenite grain growth during continuous casting considering massive type peritectic transformation
9
作者 Peng Lan Hua-song Liu Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第4期920-934,共15页
The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient... The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting. 展开更多
关键词 austenite grain growth Continuous casting Massive type transformation Kinetic model Peritectic steel
原文传递
In-Depth Understanding the Retained Austenite Stability on the Susceptibility of Multi-Alloying Ultra-Strength Steel to Hydrogen-Induced Cracking
10
作者 Chao Hai Kang Huang +1 位作者 Cuiwei Du Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期691-704,共14页
Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an e... Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation. 展开更多
关键词 Hydrogen-induced cracking Multi-alloying ultra-strength steel Retained austenite Deep cryogenic pretreatment
原文传递
Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels 被引量:10
11
作者 Li-jun Wang Qing-wu Cai Hui-bin Wu Wei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第5期543-550,共8页
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)... Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite. 展开更多
关键词 SILICON ultrahigh strength steel retained austenite temper embrittlement reversed austenite
在线阅读 下载PDF
MECHANICAL STABILIZATION OF DEFORMED AUSTENITEDURING CONTINUOUS COOLING TRANSFORMATION IN AC-Mn-Cr-Ni-Mo PLASTIC DIE STEEL 被引量:7
12
作者 D.S.Liu G.D.Wang +1 位作者 X.H.Liu G.Z.Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第2期93-99,共7页
The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the pr... The influence of prior austenite deformed at different temperature on the subsequent continuous cooling bainitic transformation has been investigated in an C-Ma-Cr-Ni-Mo plastic die steel. The results show that the prior deformation in low temperature region of austenite retards significantly the bainitic transformation. For the same continuous cooling schedule, as austenite deformed at lower temperature, the quantity of the classical sheaf-like bainite becomes less. The present results show that severe deformation leads to mechanical stabilization of austenite and causes the difficulty of bainitic ferrite propagation into the austenite. 展开更多
关键词 plastic die steel deformed austenite continuous cooling bainitic transformation mechanical stabilization of austenite
在线阅读 下载PDF
RELATIONSHIP BETWEEN RETAINED AUSTENITE AND STRAIN FOR Si-Mn TRIP STEEL 被引量:1
13
作者 王四根 王绪 +2 位作者 花礼先 刘仲武 周洪亮 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第1期10+7-10,共5页
The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for... The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel 展开更多
关键词 transformation induced plasticity (TRIP) retained austenite stability Silicon-Manganese alloys
在线阅读 下载PDF
Effect of Multi-Step Tempering on Retained Austenite and Mechanical Properties of Low Alloy Steel 被引量:2
14
作者 Hamid Reza Bakhsheshi-Rad Ahmad Monshi +3 位作者 Hossain Monajatizadeh Mohd Hasbullah Idris Mohammed Rafiq Abdul Kadir Hassan Jafari 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第12期49-56,共8页
The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by opti... The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by optical microscope,X-ray diffraction,scanning electron microscope and Feritscope,while the mechanical properties were determined by hardness and tensile tests.The results revealed that the content of retained austenite decreased by about 2% after multi-step tempering.However,the content of retained austenite increased from 3.6% to 5.1% by increasing multi-step tempering temperature.The hardness and tensile strength increased as the austenitization temperature changed from 800 to 920 ℃,while above 920 ℃,hardness and tensile strength decreased.In addition,the maximum values of hardness,ultimate and yield strength were obtained via triple tempering at 520 ℃,while beyond 520 ℃,the hardness,ultimate and yield strength decreased sharply. 展开更多
关键词 cold back-up roll retained austenite mechanical property austenite grain size
原文传递
A novel design to enhance the stability of local austenite and the volume fraction of retained austenite in a low-carbon Si Mn Q-P steel 被引量:1
15
作者 ZHANG Jun YAO Liandeng 《Baosteel Technical Research》 CAS 2022年第1期24-29,共6页
Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The int... Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The intercritical austenite exhibited a lath morphology due to the martensitic microstructure maintained prior to intercritical annealing.Consequently,the alloy element enrichment of intercritical austenite,in which the alloy element was aggregated at the austenitic boundaries and further diffused inside,improved the stability of intercritical austenite and decreased the M_(s) of it.As a result,the fraction of retained austenite in steel was increased,which improved the mechanical properties of the experimental Q-P steel. 展开更多
关键词 pre-quenching and quenching and partitioning intercritical annealing lath intercritical austenite retained austenite mechanical properties
在线阅读 下载PDF
Calculation of carbon content of austenite during heat treatment of cast irons
16
作者 Gong Wenbang Chen Guodong Xiang Gangyu 《China Foundry》 SCIE CAS 2010年第1期30-32,共3页
The austenitizing temperature controls the carbon content of the austenite which,in turn,influences the structure and properties of cast irons after subsequent cooling to room temperature.In this paper,for a cast iron... The austenitizing temperature controls the carbon content of the austenite which,in turn,influences the structure and properties of cast irons after subsequent cooling to room temperature.In this paper,for a cast iron with known silicon content,a formula of calculating austenite carbon content at a certain austenitizing temperature was developed.This relationship can be used to more accurately select carbon content of austenite or austenitizing temperature to produce desired properties after subsequent cooling to room temperature. 展开更多
关键词 cast iron heat treatment AUSTENITIZING austenite carbon content of austenite
在线阅读 下载PDF
EFFECT OF CHEMICAL COMPOSITION ON RETAINED AUSTENITE IN TRIP STEEL 被引量:20
17
作者 Y. Chen and X. ChenWuhan University of Science and Technology, Wuhan 430081, ChinaQ.F. Wang, G.L. Yuan and. C. Y. LiTechnical Center of Wuhan Iron and Steel Co., Wuhan 430080, ChinaX. Y. Li and Y.X. WangCentral Iron and Steel Research Institute, Beijing 1 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第4期339-345,共7页
The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experime... The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels. 展开更多
关键词 carbon content silicon content manganese content retained austenite TRIP steel
在线阅读 下载PDF
Recrystallization Behavior of Deformed Austenite in High Strength Microalloyed Pipeline Steel 被引量:22
18
作者 YANG Jing-hong LIU Qing-you +1 位作者 SUN Dong-bai LI Xiang-yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期75-80,共6页
Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystall... Using methods of single-hit hot compression and stress relaxation after deformation on a Gleeble 1500D thermomechanical simulator, the curves of flow stress and stress relaxation, the microstructure and the recrystallization behavior of Nb-V-Ti high strength microalloyed low carbon pipeline steel were studied, and the influence of the thermomechanical treatment parameters on dynamic and static recrystallization of the steel was investigated. It was found that microalloying elements improved the deformation activation energy and produced a retardation of the recrystallization due to the solid solution and precipitation pinning. The deformation conditions such as deformation temperature, strain, and strain rate influenced the recrystallization kinetics and the microstructure respectively. Equations obtained can be used to valuate and predict the dynamic and static recrystallizations. 展开更多
关键词 dynamic recrystallization static recrystallization microalloyed steel austenite
原文传递
Interface Migration between Martensite and Austenite during Quenching and Partitioning (Q&P) Process 被引量:20
19
作者 Ning ZHONG Xiaodong WANG +1 位作者 Yonghua RONG Li WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期751-754,共4页
An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf... An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model. 展开更多
关键词 Quenching and partitioning (Q&P) Constrained paraequilibrium (CPE) MARTENSITE austenite Interface migration
在线阅读 下载PDF
Austenite Grain Refinement and Isothermal Growth Behavior in a Low Carbon Vanadium Microalloyed Steel 被引量:25
20
作者 Geng-wei YANG Xin-jun SUN +2 位作者 Qi-long YONG Zhao-dong LI Xiao-xian LI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期757-764,共8页
The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine... The austenite grain refinement through control of the grain growth during reheating process after thermomechanical controlled process (TMCP) in a vanadium microalloyed steel was achieved. The formation of ultra-fine grained austenite was attributed to the high density of austenite nucleation at the ferrite/martensite structure and to the inhibition of austenite growth by (Ti~ V)C particles at the relatively low reheating temperature. Corresponding with the precipitation behavior of (Ti,V)C with temperature, the growth behavior of austenite in the vanadium mi- croalloyed steel could be divided into two regions. At lower reheating temperature, austenite grains grew slowly, and ultra-fine grained austenite smaller than 5 ~m was successfully obtained. By contrast, the austenite grains grew rap- idly at high temperature due to the dissolution of (Ti, V)C particles. According to the measured and predicted results of austenite growth kinetics, two models were developed to describe the growth behavior of austenite grains in two different temperature regions, and the apparent activation energy Qapp for grain growth was estimated to be about 115 and 195 kJ/mol, respectively. 展开更多
关键词 grain refinement austenization (Ti V) C precipitationl grain growth austenite
原文传递
上一页 1 2 37 下一页 到第
使用帮助 返回顶部