In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the com...In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.展开更多
Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the la...Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.展开更多
In this paper,the N-soliton solutions for the massive Thirring model(MTM)in laboratory coordinates are analyzed via the Riemann-Hilbert(RH)approach.The direct scattering including the analyticity,symmetries,and asympt...In this paper,the N-soliton solutions for the massive Thirring model(MTM)in laboratory coordinates are analyzed via the Riemann-Hilbert(RH)approach.The direct scattering including the analyticity,symmetries,and asymptotic behaviors of the Jost solutions as|λ|→∞andλ→0 are given.Considering that the scattering coefficients have simple zeros,the matrix RH problem,reconstruction formulas and corresponding trace formulas are also derived.Further,the N-soliton solutions in the reflectionless case are obtained explicitly in the form of determinants.The propagation characteristics of one-soliton solutions and interaction properties of two-soliton solutions are discussed.In particular,the asymptotic expressions of two-soliton solutions as|t|→∞are obtained,which show that the velocities and amplitudes of the asymptotic solitons do not change before and after interaction except the position shifts.In addition,three types of bounded states for two-soliton solutions are presented with certain parametric conditions.展开更多
We consider the diffusion asymptotics of a coupled model arising in radiative transfer in a unit ball inℝ3 with one-speed velocity.The model consists of a steady kinetic equation satisfied by the specific intensity of...We consider the diffusion asymptotics of a coupled model arising in radiative transfer in a unit ball inℝ3 with one-speed velocity.The model consists of a steady kinetic equation satisfied by the specific intensity of radiation coupled with a nonhomogeneous elliptic equation satisfied by the material temperature.For the O(ϵ)boundary data of the intensity of the radiation and the suitable small boundary data of the temperature,we prove the existence,uniqueness and the nonequilibrium diffusion limit of solutions to the boundary value problem for the coupled model.展开更多
This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+...This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+n▽Ф;▽·u=0,x∈Ω,t>0 in a bounded and smooth domainΩ⊂ℝ2 with no-flux/no-flux/no-flux/no-slip boundary conditions,whereΦ∈W2,∞(Ω).A recent literature[Dai F,Liu B.J Differential Equations,2023,369:115–155]has proved that for all reasonably regular initial data,the associated initial-boundary value problem possesses a global classical solution,but qualitative information on the behavior of solution has never been touched so far.In stark contrast to the positive effect of indirect signal consumption mechanism on the global solvability of system,the analysis of asymptotic behavior of solution to the system with indirect signal consumption is essentially complicated than that with direct signal consumption because the favorable coupled structure between cells and signal is broken down by the indirect signal consumption mechanism.The present study shows that the global classical solution exponentially stabilizes toward the corresponding spatially homogeneous equilibria under a smallness condition on the initial cell mass.In comparison to the previously known result concerning the uniform convergence of solution to the system with direct signal consumption,our result inter alia provides a more in-depth understanding on the asymptotic behavior of solution.展开更多
We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to ...We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to the sup-linear generalized Emden-Fowler equation and the existence of asymptotically linear solutions to the sub-linear one.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
In this paper,various extended contractions are introduced as generalizations of some existing contractions given by Kannan,Ciric,Reich and Gornicki,et al.Then,several meaningful results about asymptotically regular m...In this paper,various extended contractions are introduced as generalizations of some existing contractions given by Kannan,Ciric,Reich and Gornicki,et al.Then,several meaningful results about asymptotically regular mappings in cone metric spaces over Banach algebras are obtained,weakening the completeness of the spaces and the continuity of the mappings.Moreover,some nontrivial examples are showed to verify the innovation of the new concepts and our fxed point theorems.展开更多
Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN cha...Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.展开更多
The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or...The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.展开更多
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg...This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asy...We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.展开更多
The classical two-scale asymptotic paradigm provides macroscopic and microscopic analyses for the elastodynamic homogenization of periodic composites based on the spatial or/and temporal variable,which offers an appro...The classical two-scale asymptotic paradigm provides macroscopic and microscopic analyses for the elastodynamic homogenization of periodic composites based on the spatial or/and temporal variable,which offers an approximate framework for the asymptotic homogenization analysis of the motion equation.However,in this framework,the growing complexity of the homogenization formulation gradually becomes an obstacle as the asymptotic order increases.In such a context,a compact,fast,and accurate asymptotic paradigm is developed.This work reviews the high-order spatial two-scale asymptotic paradigm with the effective displacement field representation and optimizes the implementation by symmetrizing the tensor to be determined.Remarkably,the modified implementation gets rid of the excessive memory consumption required for computing the high-order tensor,which is demonstrated by representative one-and two-dimensional cases.The numerical results show that(1)the contrast of the material parameters between media in composites directly affects the convergence rate of the asymptotic results for the homogenization of periodic composites,(2)the convergence error of the asymptotic results mainly comes from the truncation error of the modified asymptotic homogenized motion equation,and(3)the excessive norm of the normalized wavenumber vector in the two-dimensional inclusion case may lead to a non-convergence of the asymptotic results.展开更多
In this paper,we address interesting soliton resolution,asymptotic stability of N-soliton solutions and the Painleve asymptotics for the Kundu-Eckhaus(KE)equation with nonzero boundary conditions iq_(t)+q_(xx)-2(l|q|^...In this paper,we address interesting soliton resolution,asymptotic stability of N-soliton solutions and the Painleve asymptotics for the Kundu-Eckhaus(KE)equation with nonzero boundary conditions iq_(t)+q_(xx)-2(l|q|^(2)-1)q+4β^(2)(lql^(4)-1)q+4iβ(lql^(2))_(x)q=0,q(x,0)=q_(0)(x)-±1,x→±∞.The key to proving these results is to establish the formulation of a Riemann-Hilbert(RH)problem associated with the above Cauchy problem and find its connection with the RH problem of the defocusing NLS equation.With the■-steepest descent method and the results of the defocusing NLS equation,we find complete leading order approximation formulas for the defocusing KE equation on the whole(x,t)half-plane including soliton resolution and asymptotic stability of N-soliton solutions in a solitonic region,Zakharov-Shabat asymptotics in a solitonless region and the Painlevéasymptotics in two transition regions.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity...In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.展开更多
Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional t...Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
基金Supported by The Innovation Fund of Postgraduate,Sichuan University of Science&Engineering(Y2024336)NSF of Sichuan Province(2023NSFSC0065).
文摘In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.
文摘Here we complete our work on the asymptotics of Hankel determinants studying the case wherein the entries are “ultrarapidly”-varying functions in the sense that their logarithms are rapidly varying. Moreover, the last results in the paper highlight analogies between algebraic identities for Hankelians with special entries and asymptotic relations valid for large classes of entries.
基金supported by the National Natural Science Foundation of China(Grant Nos.12475003 and11705284)by the Natural Science Foundation of Beijing Municipality(Grant Nos.1232022 and 1212007)。
文摘In this paper,the N-soliton solutions for the massive Thirring model(MTM)in laboratory coordinates are analyzed via the Riemann-Hilbert(RH)approach.The direct scattering including the analyticity,symmetries,and asymptotic behaviors of the Jost solutions as|λ|→∞andλ→0 are given.Considering that the scattering coefficients have simple zeros,the matrix RH problem,reconstruction formulas and corresponding trace formulas are also derived.Further,the N-soliton solutions in the reflectionless case are obtained explicitly in the form of determinants.The propagation characteristics of one-soliton solutions and interaction properties of two-soliton solutions are discussed.In particular,the asymptotic expressions of two-soliton solutions as|t|→∞are obtained,which show that the velocities and amplitudes of the asymptotic solitons do not change before and after interaction except the position shifts.In addition,three types of bounded states for two-soliton solutions are presented with certain parametric conditions.
基金Zhang’s research was supported by the NSFC(12271423,12071044)the Fundamental Research Funds for the Central Universities(xzy012022005)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSY026).
文摘We consider the diffusion asymptotics of a coupled model arising in radiative transfer in a unit ball inℝ3 with one-speed velocity.The model consists of a steady kinetic equation satisfied by the specific intensity of radiation coupled with a nonhomogeneous elliptic equation satisfied by the material temperature.For the O(ϵ)boundary data of the intensity of the radiation and the suitable small boundary data of the temperature,we prove the existence,uniqueness and the nonequilibrium diffusion limit of solutions to the boundary value problem for the coupled model.
文摘This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+n▽Ф;▽·u=0,x∈Ω,t>0 in a bounded and smooth domainΩ⊂ℝ2 with no-flux/no-flux/no-flux/no-slip boundary conditions,whereΦ∈W2,∞(Ω).A recent literature[Dai F,Liu B.J Differential Equations,2023,369:115–155]has proved that for all reasonably regular initial data,the associated initial-boundary value problem possesses a global classical solution,but qualitative information on the behavior of solution has never been touched so far.In stark contrast to the positive effect of indirect signal consumption mechanism on the global solvability of system,the analysis of asymptotic behavior of solution to the system with indirect signal consumption is essentially complicated than that with direct signal consumption because the favorable coupled structure between cells and signal is broken down by the indirect signal consumption mechanism.The present study shows that the global classical solution exponentially stabilizes toward the corresponding spatially homogeneous equilibria under a smallness condition on the initial cell mass.In comparison to the previously known result concerning the uniform convergence of solution to the system with direct signal consumption,our result inter alia provides a more in-depth understanding on the asymptotic behavior of solution.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12001397,12171039)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2022KJ204).
文摘We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to the sup-linear generalized Emden-Fowler equation and the existence of asymptotically linear solutions to the sub-linear one.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
基金Supported by Yunnan Provincial Reserve Talent Program for Young and Middle-aged Academic and Technical Leaders(202405AC350086)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities’Association(202301BA070001-095,202301BA070001-092)+3 种基金the Natural Science Foundation of Guangdong Province(2023A1515010997)Xingzhao Talent Support ProgramEducation and Teaching Reform Research Project of Zhaotong University(Ztjx202405,Ztjx202403,Ztjx202414)2024 First-class Undergraduate Courses of Zhaotong University(Ztujk202405,Ztujk202404).
文摘In this paper,various extended contractions are introduced as generalizations of some existing contractions given by Kannan,Ciric,Reich and Gornicki,et al.Then,several meaningful results about asymptotically regular mappings in cone metric spaces over Banach algebras are obtained,weakening the completeness of the spaces and the continuity of the mappings.Moreover,some nontrivial examples are showed to verify the innovation of the new concepts and our fxed point theorems.
基金supported in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant 2022D01B184the National Natural Science Foundation of China under Grant 62301117,62131005.
文摘Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.
文摘The rich literature concerning “asymptotic behavior of Hankel determinants” concerns the behavior, as the order n tends to ∞, of Hankel determinants whose entries are numbers, e.g., with a combinatorial interest or arising as values of special classes of functions. Such determinants are numbers depending on n, playing roles in number theory, combinatorics, random matrices and the like;and mathematicians in the involved fields have been interested in their asymptotic behaviors as n goes to ∞, as previously mentioned, with no single exception to the author’s knowledge. The study carried on in the present paper treats an altogether different situation as suggested by the specification in the title “as the variable tends to +∞”. We deal with those types of Hankel determinants (purposely called Hankelians) which are special cases of Wronskians and, continuing our work on the asymptotics of Wronskians, we study the asymptotic behaviors of n-order Hankelians, whose entries involve either regularly- or rapidly-varying functions, when the variable tends to +∞. As in the study of Wronskians, the treatment of this case also needs the whole apparatus of the theory of higher-order types of asymptotic variation, but the most demanding results are not automatic corollaries of the general theory. In fact, in the study of generic Wronskians (study motivated by applications to asymptotic expansions), the entries were required to belong to one of the classes of “higher-order regular or rapid variation”;on the contrary, in the case of Hankelians, we are confronted with functions whose logarithms are either “regularly- or rapidly-varying functions”, roughly classifiable as “ultrarapidly-varying functions”, and the study requires both special devices and a number of preliminary lemmas about products and linear combinations of functions in the mentioned classes.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB2011300the National Natural Science Foundation of China under Grant 52075262。
文摘This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
基金Supported by Natural Science Foundation of Jiangsu Province,China (No.BK20171421)。
文摘We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.
文摘The classical two-scale asymptotic paradigm provides macroscopic and microscopic analyses for the elastodynamic homogenization of periodic composites based on the spatial or/and temporal variable,which offers an approximate framework for the asymptotic homogenization analysis of the motion equation.However,in this framework,the growing complexity of the homogenization formulation gradually becomes an obstacle as the asymptotic order increases.In such a context,a compact,fast,and accurate asymptotic paradigm is developed.This work reviews the high-order spatial two-scale asymptotic paradigm with the effective displacement field representation and optimizes the implementation by symmetrizing the tensor to be determined.Remarkably,the modified implementation gets rid of the excessive memory consumption required for computing the high-order tensor,which is demonstrated by representative one-and two-dimensional cases.The numerical results show that(1)the contrast of the material parameters between media in composites directly affects the convergence rate of the asymptotic results for the homogenization of periodic composites,(2)the convergence error of the asymptotic results mainly comes from the truncation error of the modified asymptotic homogenized motion equation,and(3)the excessive norm of the normalized wavenumber vector in the two-dimensional inclusion case may lead to a non-convergence of the asymptotic results.
基金supported by the National Science Foundation of China(Grant No.12271104,51879045)。
文摘In this paper,we address interesting soliton resolution,asymptotic stability of N-soliton solutions and the Painleve asymptotics for the Kundu-Eckhaus(KE)equation with nonzero boundary conditions iq_(t)+q_(xx)-2(l|q|^(2)-1)q+4β^(2)(lql^(4)-1)q+4iβ(lql^(2))_(x)q=0,q(x,0)=q_(0)(x)-±1,x→±∞.The key to proving these results is to establish the formulation of a Riemann-Hilbert(RH)problem associated with the above Cauchy problem and find its connection with the RH problem of the defocusing NLS equation.With the■-steepest descent method and the results of the defocusing NLS equation,we find complete leading order approximation formulas for the defocusing KE equation on the whole(x,t)half-plane including soliton resolution and asymptotic stability of N-soliton solutions in a solitonic region,Zakharov-Shabat asymptotics in a solitonless region and the Painlevéasymptotics in two transition regions.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
基金supported by the National Natural Science Foundation of China(12131015,12071422)。
文摘In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors.
基金work was supported by the National Natural Science Foundation of China(Grant No.12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics(Grant No.NCYWT23036)+2 种基金the Young innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region“Five Ma-jor Tasks"Research Special Project for the Inner Mongo-lia University of Finance and Economics in 2024(Grant No.NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Fi-nance and Economics in 2024(Grant No.GZCG2426)the Talent Development Fund of Inner Mongolia.
文摘Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.